Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 79(12): 597, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36399280

RESUMO

Cervical cancer is the fourth most frequently diagnosed and fatal gynecological cancer. 15-61% of all cases metastasize and develop chemoresistance, reducing the 5-year survival of cervical cancer patients to as low as 17%. Therefore, unraveling the mechanisms contributing to metastasis is critical in developing better-targeted therapies against it. Here, we have identified a novel mechanism where nuclear Caspase-8 directly interacts with and inhibits the activity of CDK9, thereby modulating RNAPII-mediated global transcription, including those of cell-migration- and cell-invasion-associated genes. Crucially, low Caspase-8 expression in cervical cancer patients leads to poor prognosis, higher CDK9 phosphorylation at Thr186, and increased RNAPII activity in cervical cancer cell lines and patient biopsies. Caspase-8 knock-out cells were also more resistant to the small-molecule CDK9 inhibitor BAY1251152 in both 2D- and 3D-culture conditions. Combining BAY1251152 with Cisplatin synergistically overcame chemoresistance of Caspase-8-deficient cervical cancer cells. Therefore, Caspase-8 expression could be a marker in chemoresistant cervical tumors, suggesting CDK9 inhibitor treatment for their sensitization to Cisplatin-based chemotherapy.


Assuntos
RNA Polimerase II , Neoplasias do Colo do Útero , Humanos , Feminino , RNA Polimerase II/metabolismo , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/genética , Fosforilação , Caspase 8/genética , Caspase 8/metabolismo , Cisplatino/farmacologia , Inibidores de Proteínas Quinases , Quinase 9 Dependente de Ciclina/genética , Quinase 9 Dependente de Ciclina/metabolismo
2.
Int J Mol Sci ; 22(13)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201614

RESUMO

The use of MEK inhibitors in the therapy of uveal melanoma (UM) has been investigated widely but has failed to show benefits in clinical trials due to fast acquisition of resistance. In this study, we investigated a variety of therapeutic compounds in primary-derived uveal melanoma cell lines and found monosomy of chromosome 3 (M3) and mutations in BAP1 to be associated with higher resistance to MEK inhibition. However, reconstitution of BAP1 in a BAP1-deficient UM cell line was unable to restore sensitivity to MEK inhibition. We then compared UM tumors from The Cancer Genome Atlas (TCGA) with mutations in BAP1 with tumors with wild-type BAP1. Principal component analysis (PCA) clearly differentiated both groups of tumors, which displayed disparate overall and progression-free survival data. Further analysis provided insight into differential expression of genes involved in signaling pathways, suggesting that the downregulation of the eukaryotic translation initiation factor 2A (EIF2A) observed in UM tumors with BAP1 mutations and M3 UM cell lines might lead to a decrease in ribosome biogenesis while inducing an adaptive response to stress. Taken together, our study links loss of chromosome 3 with decreased sensitivity to MEK inhibition and gives insight into possible related mechanisms, whose understanding is fundamental to overcome resistance in this aggressive tumor.


Assuntos
Cromossomos Humanos Par 3/genética , Resistencia a Medicamentos Antineoplásicos/genética , Melanoma/genética , Monossomia , Inibidores de Proteínas Quinases/farmacologia , Neoplasias Uveais/genética , Linhagem Celular Tumoral , Variações do Número de Cópias de DNA , Difenilamina/análogos & derivados , Difenilamina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Melanoma/tratamento farmacológico , Melanoma/mortalidade , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Piridonas/farmacologia , Pirimidinonas/farmacologia , Sulfonamidas/farmacologia , Análise de Sobrevida , Proteínas Supressoras de Tumor/genética , Ubiquitina Tiolesterase/genética , Neoplasias Uveais/tratamento farmacológico , Neoplasias Uveais/mortalidade
3.
Int J Mol Sci ; 21(23)2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33287140

RESUMO

Beclin 1 is a major regulator of autophagy, and it is a core component of the class III PI3K complexes. Beclin 1 is a highly conserved protein and its function is regulated in a number of ways, including post-translational modifications. Several studies indicate that receptor and non-receptor tyrosine kinases regulate autophagy activity in cancer, and some suggest the importance of Beclin 1 tyrosine phosphorylation in this process. Here we summarize the current knowledge of the mechanism whereby some oncogenic tyrosine kinases regulate autophagy through Beclin 1.


Assuntos
Autofagia , Proteína Beclina-1/metabolismo , Proteínas Oncogênicas/metabolismo , Proteínas Tirosina Quinases/metabolismo , Animais , Autofagia/genética , Proteína Beclina-1/química , Proteína Beclina-1/genética , Regulação da Expressão Gênica , Humanos , Neoplasias/etiologia , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Oncogênicas/química , Proteínas Oncogênicas/genética , Fosforilação , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/genética , Transdução de Sinais , Relação Estrutura-Atividade
5.
Bioinformatics ; 32(11): 1643-51, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-26635139

RESUMO

MOTIVATION: Identification of altered pathways that are clinically relevant across human cancers is a key challenge in cancer genomics. Precise identification and understanding of these altered pathways may provide novel insights into patient stratification, therapeutic strategies and the development of new drugs. However, a challenge remains in accurately identifying pathways altered by somatic mutations across human cancers, due to the diverse mutation spectrum. We developed an innovative approach to integrate somatic mutation data with gene networks and pathways, in order to identify pathways altered by somatic mutations across cancers. RESULTS: We applied our approach to The Cancer Genome Atlas (TCGA) dataset of somatic mutations in 4790 cancer patients with 19 different types of tumors. Our analysis identified cancer-type-specific altered pathways enriched with known cancer-relevant genes and targets of currently available drugs. To investigate the clinical significance of these altered pathways, we performed consensus clustering for patient stratification using member genes in the altered pathways coupled with gene expression datasets from 4870 patients from TCGA, and multiple independent cohorts confirmed that the altered pathways could be used to stratify patients into subgroups with significantly different clinical outcomes. Of particular significance, certain patient subpopulations with poor prognosis were identified because they had specific altered pathways for which there are available targeted therapies. These findings could be used to tailor and intensify therapy in these patients, for whom current therapy is suboptimal. AVAILABILITY AND IMPLEMENTATION: The code is available at: http://www.taehyunlab.org CONTACT: jhcheong@yuhs.ac or taehyun.hwang@utsouthwestern.edu or taehyun.cs@gmail.com SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Mutação , Neoplasias , Análise Mutacional de DNA , Redes Reguladoras de Genes , Genômica , Humanos
6.
EMBO J ; 30(16): 3242-58, 2011 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-21804531

RESUMO

Mammalian target of rapamycin (mTOR) complex 1 (mTORC1) is an important, highly conserved, regulator of cell growth. Ancient among the signals that regulate mTORC1 are nutrients. Amino acids direct mTORC1 to the surface of the late endosome/lysosome, where mTORC1 becomes receptive to other inputs. However, the interplay between endosomes and mTORC1 is poorly understood. Here, we report the discovery of a network that links mTORC1 to a critical component of the late endosome/lysosome, the V-ATPase. In an unbiased screen, we found that mTORC1 regulated the expression of, among other lysosomal genes, the V-ATPases. mTORC1 regulates V-ATPase expression both in cells and in mice. V-ATPase regulation by mTORC1 involves a transcription factor translocated in renal cancer, TFEB. TFEB is required for the expression of a large subset of mTORC1 responsive genes. mTORC1 coordinately regulates TFEB phosphorylation and nuclear localization and in a manner dependent on both TFEB and V-ATPases, mTORC1 promotes endocytosis. These data uncover a regulatory network linking an oncogenic transcription factor that is a master regulator of lysosomal biogenesis, TFEB, to mTORC1 and endocytosis.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/fisiologia , Endocitose/fisiologia , Processamento de Proteína Pós-Traducional , Proteínas/fisiologia , ATPases Vacuolares Próton-Translocadoras/fisiologia , Motivos de Aminoácidos , Animais , Linhagem Celular Transformada/efeitos dos fármacos , Linhagem Celular Transformada/metabolismo , Dactinomicina/farmacologia , Endocitose/efeitos dos fármacos , Indução Enzimática/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Lisossomos/enzimologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Complexos Multiproteicos , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia , Transdução de Sinais/fisiologia , Sirolimo/farmacologia , Serina-Treonina Quinases TOR , Proteína 1 do Complexo Esclerose Tuberosa , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/fisiologia , ATPases Vacuolares Próton-Translocadoras/biossíntese , ATPases Vacuolares Próton-Translocadoras/genética
7.
BMC Urol ; 15: 24, 2015 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-25885592

RESUMO

BACKGROUND: To assess pathological correlations and temporal trends of Angiopoietin-2 (ANGPT2), vascular endothelial growth factor (VEGF) and M2 Pyruvate kinase (TuM2PK), markers of tumor vascular development and metabolism, in patients with renal cell carcinoma (RCC). METHODS: We prospectively collected plasma samples from 89 patients who underwent surgical/ablative therapy for RCC and 38 patients with benign disease (nephrolithiasis, hematuria without apparent neoplastic origin, or renal cysts). In RCC patients, marker levels were compared between at least 1 preoperative and 1 postoperative time point generally 3 weeks after surgery. Marker temporal trends were assessed using the Wilcoxon sign-rank test. Plasma VEGF, ANGPT2, and TuM2PK levels were determined by ELISA and tested for association with pathological variables. RESULTS: Median age was comparable between groups. 83/89 (93%) of the cohort underwent surgical extirpation. 82% of the tumors were organ confined (T ≤ 2, N0). Only ANGPT2 exhibited significantly elevated preoperative levels in patients with RCC compared to benign disease (p = 0.046). Elevated preoperative levels of ANGPT2 and TuM2PK significantly correlated with increased tumor size and advanced grade (p < 0.05). Chromophobe RCC exhibited higher levels of ANGPT2 compared to other histologies (p < 0.05). A decline in marker level after surgery was not observed, likely due to the timing of the analyses. CONCLUSION: Our results suggest that ANGPT2 is a marker of RCC. Additionally, ANGPT2 and TuM2PK significantly correlated with several adverse pathological features. Further studies are needed to determine clinical applicability.


Assuntos
Angiopoietina-2/sangue , Biomarcadores Tumorais/sangue , Carcinoma de Células Renais/sangue , Neoplasias Renais/sangue , Piruvato Quinase/sangue , Fator A de Crescimento do Endotélio Vascular/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma de Células Renais/diagnóstico , Carcinoma de Células Renais/cirurgia , Feminino , Humanos , Neoplasias Renais/diagnóstico , Neoplasias Renais/cirurgia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Resultado do Tratamento , Adulto Jovem
8.
Lancet Oncol ; 14(2): 159-167, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23333114

RESUMO

BACKGROUND: Clear-cell renal-cell carcinomas display divergent clinical behaviours. However, the molecular genetic events driving these behaviours are unknown. We discovered that BAP1 is mutated in about 15% of clear-cell renal-cell carcinoma, and that BAP1 and PBRM1 mutations are largely mutually exclusive. The aim of this study was to investigate the clinicopathological significance of these molecular subtypes and to determine whether patients with BAP1-mutant and PBRM1-mutant tumours had different overall survival. METHODS: In this retrospective analysis, we assessed 145 patients with primary clear-cell renal-cell carcinoma and defined PBRM1 and BAP1 mutation status from the University of Texas Southwestern Medical Center (UTSW), TX, USA, between 1998 and 2011. We classified patients into those with BAP1-mutant tumours and those with tumours exclusively mutated for PBRM1 (PBRM1-mutant). We used a second independent cohort (n=327) from The Cancer Genome Atlas (TCGA) for validation. In both cohorts, more than 80% of patients had localised or locoregional disease at presentation. Overall both cohorts were similar, although the TCGA had more patients with metastatic and higher-grade disease, and more TCGA patients presented before molecularly targeted therapies became available. FINDINGS: The median overall survival in the UTSW cohort was significantly shorter for patients with BAP1-mutant tumours (4·6 years; 95% CI 2·1-7·2), than for patients with PBRM1-mutant tumours (10·6 years; 9·8-11·5), corresponding to a HR of 2·7 (95% CI 0·99-7·6, p=0·044). Median overall survival in the TCGA cohort was 1·9 years (95% CI 0·6-3·3) for patients with BAP1-mutant tumours and 5·4 years (4·0-6·8) for those with PBRM1-mutant tumours. A HR similar to the UTSW cohort was noted in the TCGA cohort (2·8; 95% CI 1·4-5·9; p=0·004). Patients with mutations in both BAP1 and PBRM1, although a minority (three in UTSW cohort and four in TCGA cohort), had the worst overall survival (median 2·1 years, 95% CI 0·3-3·8, for the UTSW cohort, and 0·2 years, 0·0-1·2, for the TCGA cohort). INTERPRETATION: Our findings identify mutation-defined subtypes of clear-cell renal-cell carcinoma with distinct clinical outcomes, a high-risk BAP1-mutant group and a favourable PBRM1-mutant group. These data establish the basis for a molecular genetic classification of clear-cell renal-cell carcinoma that could influence treatment decisions in the future. The existence of different molecular subtypes with disparate outcomes should be considered in the design and assessment of clinical studies. FUNDING: Cancer Prevention and Research Institution of Texas and National Cancer Institute.


Assuntos
Carcinoma de Células Renais/genética , Carcinoma de Células Renais/mortalidade , Neoplasias Renais/genética , Mutação , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Ubiquitina Tiolesterase/genética , Idoso , Proteínas de Ligação a DNA , Feminino , Humanos , Neoplasias Renais/mortalidade , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Pessoa de Meia-Idade , Complexos Multiproteicos/fisiologia , Reprodutibilidade dos Testes , Estudos Retrospectivos , Análise de Sobrevida , Serina-Treonina Quinases TOR/fisiologia
9.
Cancer Commun (Lond) ; 44(1): 101-126, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38140698

RESUMO

BACKGROUND: The cellular tumor protein p53 (TP53) is a tumor suppressor gene that is frequently mutated in human cancers. Among various cancer types, the very aggressive high-grade serous ovarian carcinoma (HGSOC) exhibits the highest prevalence of TP53 mutations, present in >96% of cases. Despite intensive efforts to reactivate p53, no clinical drug has been approved to rescue p53 function. In this study, our primary objective was to administer in vitro-transcribed (IVT) wild-type (WT) p53-mRNA to HGSOC cell lines, primary cells, and orthotopic mouse models, with the aim of exploring its impact on inhibiting tumor growth and dissemination, both in vitro and in vivo. METHODS: To restore the activity of p53, WT p53 was exogenously expressed in HGSOC cell lines using a mammalian vector system. Moreover, IVT WT p53 mRNA was delivered into different HGSOC model systems (primary cells and patient-derived organoids) using liposomes and studied for proliferation, cell cycle progression, apoptosis, colony formation, and chromosomal instability. Transcriptomic alterations induced by p53 mRNA were analyzed using RNA sequencing in OVCAR-8 and primary HGSOC cells, followed by ingenuity pathway analysis. In vivo effects on tumor growth and metastasis were studied using orthotopic xenografts and metastatic intraperitoneal mouse models. RESULTS: Reactivation of the TP53 tumor suppressor gene was explored in different HGSOC model systems using newly designed IVT mRNA-based methods. The introduction of WT p53 mRNA triggered dose-dependent apoptosis, cell cycle arrest, and potent long-lasting inhibition of HGSOC cell proliferation. Transcriptome analysis of OVCAR-8 cells upon mRNA-based p53 reactivation revealed significant alterations in gene expression related to p53 signaling, such as apoptosis, cell cycle regulation, and DNA damage. Restoring p53 function concurrently reduces chromosomal instability within the HGSOC cells, underscoring its crucial contribution in safeguarding genomic integrity by moderating the baseline occurrence of double-strand breaks arising from replication stress. Furthermore, in various mouse models, treatment with p53 mRNA reduced tumor growth and inhibited tumor cell dissemination in the peritoneal cavity in a dose-dependent manner. CONCLUSIONS: The IVT mRNA-based reactivation of p53 holds promise as a potential therapeutic strategy for HGSOC, providing valuable insights into the molecular mechanisms underlying p53 function and its relevance in ovarian cancer treatment.


Assuntos
Neoplasias Ovarianas , Proteína Supressora de Tumor p53 , Animais , Camundongos , Humanos , Feminino , Proteína Supressora de Tumor p53/genética , RNA Mensageiro/genética , Gradação de Tumores , Linhagem Celular Tumoral , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Instabilidade Cromossômica , Mamíferos
10.
Cell Death Dis ; 15(1): 14, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38182563

RESUMO

GRB2 is an adaptor protein of HER2 (and several other tyrosine kinases), which we identified as a novel BECN1 (Beclin 1) interacting partner. GRB2 co-immunoprecipitated with BECN1 in several breast cancer cell lines and regulates autophagy through a mechanism involving the modulation of the class III PI3Kinase VPS34 activity. In ovo studies in a CAM (Chicken Chorioallantoic Membrane) model indicated that GRB2 knockdown, as well as overexpression of GRB2 loss-of-function mutants (Y52A and S86A-R88A) compromised tumor growth. These differences in tumor growth correlated with differential autophagy activity, indicating that autophagy effects might be related to the effects on tumorigenesis. Our data highlight a novel function of GRB2 as a BECN1 binding protein and a regulator of autophagy.


Assuntos
Autofagia , Proteína Beclina-1 , Proteína Adaptadora GRB2 , Animais , Proteínas Adaptadoras de Transdução de Sinal , Proteína Beclina-1/metabolismo , Carcinogênese , Transformação Celular Neoplásica , Humanos , Proteína Adaptadora GRB2/metabolismo
11.
Nat Chem Biol ; 7(10): 712-9, 2011 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-21909097

RESUMO

A chemical genetics approach was taken to identify inhibitors of NS1, a major influenza A virus virulence factor that inhibits host gene expression. A high-throughput screen of 200,000 synthetic compounds identified small molecules that reversed NS1-mediated inhibition of host gene expression. A counterscreen for suppression of influenza virus cytotoxicity identified naphthalimides that inhibited replication of influenza virus and vesicular stomatitis virus (VSV). The mechanism of action occurs through activation of REDD1 expression and concomitant inhibition of mammalian target of rapamycin complex 1 (mTORC1) via TSC1-TSC2 complex. The antiviral activity of naphthalimides was abolished in REDD1(-/-) cells. Inhibition of REDD1 expression by viruses resulted in activation of the mTORC1 pathway. REDD1(-/-) cells prematurely upregulated viral proteins via mTORC1 activation and were permissive to virus replication. In contrast, cells conditionally expressing high concentrations of REDD1 downregulated the amount of viral protein. Thus, REDD1 is a new host defense factor, and chemical activation of REDD1 expression represents a potent antiviral intervention strategy.


Assuntos
Antivirais/farmacologia , Naftalimidas/farmacologia , Orthomyxoviridae/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Vesiculovirus/efeitos dos fármacos , Animais , Antivirais/química , Linhagem Celular , Cães , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Ensaios de Triagem em Larga Escala , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Naftalimidas/química , Orthomyxoviridae/genética , Orthomyxoviridae/metabolismo , Relação Estrutura-Atividade , Fatores de Transcrição/deficiência , Vesiculovirus/genética , Vesiculovirus/metabolismo , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos
12.
Cancers (Basel) ; 16(1)2023 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-38201534

RESUMO

Ovarian cancer is one of the most lethal gynecological cancers worldwide, with approximately 70% of cases diagnosed in advanced stages. This late diagnosis results from the absence of early warning symptoms and is associated with an unfavorable prognosis. A standard treatment entails a combination of primary chemotherapy with platinum and taxane agents. Tumor recurrence following first-line chemotherapy with Carboplatin and Paclitaxel is detected in 80% of advanced ovarian cancer patients, with disease relapse occurring within 2 years of initial treatment. Platinum-resistant ovarian cancer is one of the biggest challenges in treating patients. Second-line treatments involve PARP or VEGF inhibitors. Identifying novel biomarkers and resistance mechanisms is critical to overcoming resistance, developing newer treatment strategies, and improving patient survival. In this study, we have determined that low Caspase-8 expression in ovarian cancer patients leads to poor prognosis. High-Grade Serous Ovarian Cancer (HGSOC) cells lacking Caspase-8 expression showed an altered composition of the RNA Polymerase II-containing transcriptional elongation complex leading to increased transcriptional activity. Caspase-8 knockout cells display increased BRD4 expression and CDK9 activity and reduced sensitivities to Carboplatin and Paclitaxel. Based on our work, we are proposing three potential therapeutic approaches to treat advanced ovarian cancer patients who exhibit low Caspase-8 expression and resistance to Carboplatin and/or Paclitaxel-combinations of (1) Carboplatin with small-molecule BRD4 inhibitors; (2) Paclitaxel with small-molecule BRD4 inhibitors, and (3) small-molecule BRD4 and CDK9 inhibitors. In addition, we are also proposing two predictive markers of chemoresistance-BRD4 and pCDK9.

13.
Methods Mol Biol ; 2445: 75-98, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34972987

RESUMO

Autophagy is an intracellular degradation process that maintains the cellular homeostasis and it is regulated in multiple ways, both in health and disease. Assessment of autophagic flux in cells is an important approach for understanding the function of autophagy in biological contexts. Here, we describe a new tool for the qualitative and quantitative determination of autophagic flux using a dual lentiviral reporter system that generates a fusion HiBiT-GFP-LC3B protein suitable for generating stable cell lines.


Assuntos
Autofagia , Proteínas Associadas aos Microtúbulos , Autofagia/genética , Linhagem Celular , Proteínas Associadas aos Microtúbulos/metabolismo
14.
Front Cell Dev Biol ; 10: 852812, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35392170

RESUMO

Malignant pleural mesothelioma (MPM) is a rare type of cancer with a grim prognosis. So far, no targetable oncogenic mutation was identified in MPM and biomarkers with predictive value toward drug sensitivity or resistance are also lacking. Nintedanib (BIBF1120) is a small-molecule tyrosine kinase inhibitor that showed promising efficacy preclinically and in phase II trial in MPM as an angiogenesis inhibitor combined with chemotherapy. However, the extended phase III trial failed. In this study, we investigated the effect of nintedanib on one of its targets, the SRC kinase, in two commercial and six novel MPM cell lines. Surprisingly, nintedanib treatment did not inhibit SRC activation in MPM cells and even increased phosphorylation of SRC in several cell lines. Combination treatment with the SRC inhibitor dasatinib could reverse this effect in all cell lines, however, the cellular response was dependent on the drug sensitivity of the cells. In 2 cell lines, with high sensitivity to both nintedanib and dasatinib, the drug combination had no synergistic effect but cell death was initiated. In 2 cell lines insensitive to nintedanib combination treatment reduced cell viability synergisticaly without cell death. In contrast, in these cells both treatments increased the autophagic flux assessed by degradation of the autophagy substrate p62 and increased presence of LC3B-II, increased number of GFP-LC3 puncta and decreased readings of the HiBiT-LC3 reporter. Additionaly, autophagy was synergistically promoted by the combined treatment. At the transcriptional level, analysis of lysosomal biogenesis regulator Transcription Factor EB (TFEB) showed that in all cell lines treated with nintedanib and to a lesser extent, with dasatinib, it became dephosphorylated and accumulated in the nucleus. Interestingly, the expression of certain known TFEB target genes implicated in autophagy or lysosomal biogenesis were significantly modified only in 1 cell line. Finally, we showed that autophagy induction in our MPM cell lines panel by nintedanib and dasatinib is independent of the AKT/mTOR and the ERK pathways. Our study reveals that autophagy can serve as a cytoprotective mechanism following nintedanib or dasatinib treatments in MPM cells.

15.
iScience ; 24(3): 102173, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33681728

RESUMO

Synonymous mutations are generally disregarded by genomic analyses because they are considered non-pathogenic. We identified and characterized a somatic synonymous mutation in the epigenetic modifier and tumor suppressor BAP1, resulting in exon skipping and complete protein inactivation. This radically altered the prognosis of a clear-cell renal cell carcinoma patient from The Cancer Genome Atlas (TCGA) with a PBRM1 mutation (a predictor biomarker for positive responses to immune checkpoint inhibitors) from good (an estimated overall survival of 117 months) to a very bad prognosis (an estimated overall survival of 31 months), emphasizing the importance of scrutinizing synonymous mutations near acceptor splice sites of cancer genes for accurate precision medicine.

16.
Cell Death Discov ; 6: 12, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194992

RESUMO

Oncogenic KRAS mutations are encountered in more than 90% of pancreatic ductal adenocarcinomas. MEK inhibition has failed to procure any clinical benefits in mutant RAS-driven cancers including pancreatic ductal adenocarcinoma (PDAC). To identify potential resistance mechanisms underlying MEK inhibitor (MEKi) resistance in PDAC, we investigated lysosomal drug accumulation in PDAC models both in vitro and in vivo. Mouse PDAC models and human PDAC cell lines as well as human PDAC xenografts treated with the MEK inhibitor trametinib or refametinib led to an enhanced expression of lysosomal markers and enrichment of lysosomal gene sets. A time-dependent, increase in lysosomal content was observed upon MEK inhibition. Strikingly, there was a strong activation of lysosomal biogenesis in cell lines of the classical compared to the basal-like molecular subtype. Increase in lysosomal content was associated with nuclear translocation of the Transcription Factor EB (TFEB) and upregulation of TFEB target genes. siRNA-mediated depletion of TFEB led to a decreased lysosomal biogenesis upon MEK inhibition and potentiated sensitivity. Using LC-MS, we show accumulation of MEKi in the lysosomes of treated cells. Therefore, MEK inhibition triggers lysosomal biogenesis and subsequent drug sequestration. Combined targeting of MEK and lysosomal function may improve sensitivity to MEK inhibition in PDAC.

18.
Oncogenesis ; 8(1): 4, 2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30631037

RESUMO

Clear cell renal cell carcinoma (ccRCC) is intimately associated with defects in ubiquitin-mediated protein degradation. Herein, we report that deficiency in the E3 ligase subunit cullin 5 (CUL5) promotes chromosomal instability and is an independent negative prognostic factor in ccRCC. CUL5 was initially identified in an RNA interference screen as a novel regulator of centrosome duplication control. We found that depletion of CUL5 rapidly promotes centriole overduplication and mitotic errors. Downregulation of CUL5 also caused an increase of DNA damage that was found to involve impaired DNA double-strand break repair. Using immunohistochemistry, CUL5 protein expression was found to be below detection level in the majority of RCCs. A re-analysis of the TCGA ccRCC cohort showed that a reduced CUL5 gene expression or CUL5 deletion were associated with a significantly worse overall patient survival. In conclusion, our results indicate that CUL5 functions as a novel tumor suppressor with prognostic relevance in ccRCC and is critically involved in the maintenance of genome stability.

19.
Front Oncol ; 9: 742, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31475104

RESUMO

Introduction: Definitive chemoradiation (CRT) followed by high-dose-rate (HDR) brachytherapy (BT) represents state-of-the-art treatment for locally-advanced cervical cancer. Despite use of this treatment paradigm, disease-related outcomes have stagnated in recent years, indicating the need for biomarker development and improved patient stratification. Here, we report the association of Polo-like kinase (PLK) 3 expression and Caspase 8 T273 phosphorylation levels with survival among patients with cervical squamous cell carcinoma (CSCC) treated with CRT plus BT. Methods: We identified 74 patients with FIGO Stage Ib to IVb cervix squamous cell carcinoma. Baseline immunohistochemical scoring of PLK3 and pT273 Caspase 8 levels was performed on pre-treatment samples. Correlation was then assessed between marker expression and clinical endpoints, including cumulative incidences of local and distant failure, cancer-specific survival (CSS) and overall survival (OS). Data were then validated using The Cancer Genome Atlas (TCGA) dataset. Results: PLK3 expression levels were associated with pT273 Caspase 8 levels (p = 0.009), as well as N stage (p = 0.046), M stage (p = 0.026), and FIGO stage (p = 0.001). By the same token, pT273 Caspase 8 levels were associated with T stage (p = 0.031). Increased PLK3 levels corresponded to a lower risk of distant relapse (p = 0.009), improved CSS (p = 0.001), and OS (p = 0.003). Phospho T273 Caspase 8 similarly corresponded to decreased risk of distant failure (p = 0.021), and increased CSS (p < 0.001) and OS (p < 0.001) and remained a significant predictor for OS on multivariate analysis. TCGA data confirmed the association of low PLK3 expression with resistance to radiotherapy and BT (p < 0.05), as well as increased propensity for metastasis (p = 0.019). Finally, a combined PLK3 and pT273 Caspase 8 score predicted for decreased distant relapse (p = 0.005), and both improved CSS (p < 0.001) and OS (p < 0.001); this combined score independently predicted distant failure (p = 0.041) and CSS (p = 0.003) on multivariate analyses. Conclusion: Increased pre-treatment tumor levels of PLK3 and pT273 Caspase 8 correspond to improved disease-related outcomes among cervical cancer patients treated with CRT plus BT, representing a potential biomarker in this context.

20.
Cell Rep ; 25(4): 1040-1050.e5, 2018 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-30355483

RESUMO

We have uncovered a role for Jumonji inhibitors in overcoming radioresistance through KDM5B inhibition. Pharmacological blockade of Jumonji demethylases with JIB-04 leads to specific accumulation of H3K4me3 at sites marked by γH2AX and impaired recruitment of DNA repair factors, preventing resolution of damage and resulting in robust sensitization to radiation therapy. In DNA-repair-proficient cancer cells, knockdown of the H3K4me3 demethylase KDM5B, but not other Jumonji enzymes, mimics pharmacological inhibition, and KDM5B overexpression rescues this phenotype and increases radioresistance. The H3K4me3 demethylase inhibitor PBIT also sensitizes cancer cells to radiation, while an H3K27me3 demethylase inhibitor does not. In vivo co-administration of radiation with JIB-04 significantly prolongs the survival of mice with tumors even long after cessation of treatment. In human patients, lung squamous cell carcinomas highly expressing KDM5B respond poorly to radiation. Thus, we propose the use of Jumonji KDM inhibitors as potent radiosensitizers.


Assuntos
Quebras de DNA de Cadeia Dupla , Histonas/metabolismo , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Tolerância a Radiação , Aminopiridinas/farmacologia , Animais , Benzazepinas/farmacologia , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Proteína Quinase Ativada por DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Desmetilação , Feminino , Humanos , Hidrazonas/farmacologia , Histona Desmetilases com o Domínio Jumonji/metabolismo , Metilação/efeitos dos fármacos , Camundongos Nus , Proteínas Nucleares/metabolismo , Pirimidinas/farmacologia , Rad51 Recombinase/metabolismo , Tolerância a Radiação/efeitos dos fármacos , Análise de Sobrevida , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA