Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Gels ; 10(6)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38920914

RESUMO

Cellulose nanofibrils (CNFs) are particles with a high aspect ratio. Typically, chemically pre-treated CNFs (containing anionic or cationic charged groups) consist of long fibrils (up to 2 µm) with very low thickness (less than 10 nm). Derived from their high aspect ratio, CNFs form strong hydrogels with high elasticity at low concentrations. Thus, CNF suspensions appear as an interesting rheology modifier to be applied in cosmetics, paints, foods, and as a mineral suspending agent, among other applications. The high viscosity results from the strong 3D fibril network, which is related to the good fibrillation of the material, allowing the nanofibrils to overlap. The overlap concentration (c*) was found to vary from ca. 0.13 to ca. 0.60 wt.% depending on the type and intensity of the pre-treatment applied during the preparation of the CNFs. The results confirm the higher tendency for the fibres treated with (3-chloro-2-hydroxypropyl) trimethylammonium chloride (CHPTAC) and 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) to form a 3D network, resulting in the lowest c*. For the TEMPO-oxidised CNF suspensions, it was also found that aggregation is improved at acidic pH conditions due to lower charge repulsion among fibrils, leading to an increase in the suspension viscosity as well as higher apparent yield stresses. TEMPO CNF suspensions with a low content of carboxylic groups tend to precipitate at moderately acidic pH values.

2.
Polymers (Basel) ; 15(14)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37514527

RESUMO

Cellulose is the most abundant renewable polymer on Earth and can be obtained from several different sources, such as trees, grass, or biomass residues. However, one of the issues is that not all the fractionation processes are eco-friendly and are essentially based on cooking the lignocellulose feedstock in a harsh chemical mixture, such as NaOH + Na2S, and water, to break loose fibers. In the last few years, new sustainable fractionation processes have been developed that enable the obtaining of cellulose fibers in a more eco-friendly way. As a raw material, cellulose's use is widely known and established in many areas. Additionally, its products/derivatives are recognized to have a far better environmental impact than fossil-based materials. Examples are textiles and packaging, where forest-based fibers may contribute to renewable and biodegradable substitutes for common synthetic materials and plastics. In this review, some of the main structural characteristics and properties of cellulose, recent green extraction methods/strategies, chemical modification, and applications of cellulose derivatives are discussed.

3.
Int J Biol Macromol ; 248: 125886, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37481180

RESUMO

The use of cellulose micro/nanofibrils (CMNFs) as reinforcement paper additive at industrial scale is delayed due to inconsistent results, suggesting a lack of proper consideration of some key parameters. The high influence of fibrillated nanocellulose dispersion has been recently identified as a key parameter for paper bulk reinforcement but it has not been studied for surface coating applications yet. This paper studies the effect of CMNF dispersion degree prior to their addition and during mixing with starch on the reinforcement of paper by coating. Results show that this effect depends on the type of CMNFs since it is related to the surface interactions. For a given formulation, a correlation is observed between the CMNF dispersion and the CMNF/starch mixing agitation with the rheology of the coating formulation which highly affects the paper properties. The optimal dispersion degree is different for each nanocellulose, but the best mechanical properties were always achieved at the lowest viscosity of the coating formulation. In general, the initial state of the nanocellulose 3D network, influences the mixing and smooth application of the coating and affects the reinforcement effect. Therefore, the CMNF industrial implementation in coating formulations will be facilitated by the on-line control of formulations prior to their surface application.


Assuntos
Celulose , Indústrias , Reologia , Amido , Viscosidade
4.
Bioengineering (Basel) ; 10(8)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37627871

RESUMO

Cellulose micro/nanomaterials (CMNMs) are innovative materials with a wide spectrum of industrial and biomedical applications. Although cellulose has been recognized as a safe material, the unique properties of its nanosized forms have raised concerns about their safety for human health. Genotoxicity is an endpoint that must be assessed to ensure that no carcinogenic risks are associated with exposure to nanomaterials. In this study, we evaluated the genotoxicity of two types of cellulose micro/nanofibrils (CMF and CNF) and one sample of cellulose nanocrystals (CNC), obtained from industrial bleached Eucalyptus globulus kraft pulp. For that, we exposed co-cultures of human alveolar epithelial A549 cells and THP-1 monocyte-derived macrophages to a concentration range of each CMNM and used the micronucleus (MN) and comet assays. Our results showed that only the lowest concentrations of the CMF sample were able to induce DNA strand breaks (FPG-comet assay). However, none of the three CMNMs produced significant chromosomal alterations (MN assay). These findings, together with results from previous in vitro studies using monocultures of A549 cells, indicate that the tested CNF and CNC are not genotoxic under the conditions tested, while the CMF display a low genotoxic potential.

5.
Int J Biol Macromol ; 201: 468-479, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35051499

RESUMO

Micro/nanofibrillated celluloses (M/NFCs) have attracted considerable research interest over the past few decades, with various pretreatments being used to reduce energy consumption and/or increase fibrillation. To date, few studies have considered cationization as a pretreatment for their preparation. In this work, quaternary ammonium groups were attached to cellulose fibers by a direct reaction with 2,3-epoxypropyltrimethylammonium chloride or by a two-step method (periodate oxidation + Girard's reagent T). The cationic fibers with degrees of substitution (DS) between 0.02 and 0.36, were subjected to homogenization treatment. The morphological properties, chemical composition, and rheological behavior were evaluated to assess the effect of DS and the effect of the cationization method (for samples with similar DS). The two-step cationization resulted in significant degradation of the cellulose structure, leading to the formation of short fibrils and solubilization of the material, ranging from 6% to almost complete solubilization at a DS of 0.36. Direct cationization resulted in longer fibrils with an average diameter of 1 µm, and no significant cellulose degradation was observed, leading to a more cohesive gel-like material (at 1 wt%). These observations clearly show the strong influence of the cationization method on the final properties of the cationic cellulosic materials.


Assuntos
Celulose , Eucalyptus , Cátions/química , Celulose/química , Reologia
6.
Polymers (Basel) ; 14(16)2022 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-36015566

RESUMO

Cationic polyacrylamides (CPAMs) are usually used as filler retention agents in papermaking formulations. However, increasing environmental restrictions and their non-renewable origin have driven research into bio-based alternatives. In this context, cationic lignocellulosic derivatives have been attracting considerable research interest as a potential substitute. In this work, distinct cationic celluloses with degrees of substitution of between 0.02 and 1.06 and with distinct morphological properties were synthesized via the cationization of bleached eucalyptus kraft pulp, using a direct cationization with (3-chloro-2-hydroxypropyl) trimethylammonium chloride (CHPTAC) or a two-step cationization, where the cellulose was first oxidized to form dialdehyde cellulose and was then made to react with Girard's reagent T (GT). Fibrillated samples were produced by subjecting some samples to a high-pressure homogenization treatment. The obtained samples were evaluated regarding their potential to flocculate and retain precipitated calcium carbonate (PCC), and their performance was compared to that of a commercial CPAM. The cationic fibrillated celluloses, with a degree of substitution of ca. 0.13-0.16, exhibited the highest flocculation performance of all the cationic celluloses and were able to increase the filler retention from 43% (with no retention agent) to ca. 61-62% (with the addition of 20 mg/g of PCC). Although it was not possible to achieve the performance of CPAM (filler retention of 73% with an addition of 1 mg/g of PCC), the results demonstrated the potential of cationic cellulose derivatives for use as bio-based retention agents.

7.
J Xenobiot ; 12(2): 91-108, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35645290

RESUMO

(1) Background: Nanocellulose is an innovative engineered nanomaterial with an enormous potential for use in a wide array of industrial and biomedical applications and with fast growing economic value. The expanding production of nanocellulose is leading to an increased human exposure, raising concerns about their potential health effects. This study was aimed at assessing the potential toxic and genotoxic effects of different nanocelluloses in two mammalian cell lines; (2) Methods: Two micro/nanocelluloses, produced with a TEMPO oxidation pre-treatment (CNFs) and an enzymatic pre-treatment (CMFs), and cellulose nanocrystals (CNCs) were tested in osteoblastic-like human cells (MG-63) and Chinese hamster lung fibroblasts (V79) using the MTT and clonogenic assays to analyse cytotoxicity, and the micronucleus assay to test genotoxicity; (3) Results: cytotoxicity was observed by the clonogenic assay in V79 cells, particularly for CNCs, but not by the MTT assay; CNF induced micronuclei in both cell lines and nucleoplasmic bridges in MG-63 cells; CMF and CNC induced micronuclei and nucleoplasmic bridges in MG-63 cells, but not in V79 cells; (4) Conclusions: All nanocelluloses revealed cytotoxicity and genotoxicity, although at different concentrations, that may be related to their physicochemical differences and availability for cell uptake, and to differences in the DNA damage response of the cell model.

8.
Nanomaterials (Basel) ; 12(9)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35564141

RESUMO

Cellulose micro/nanomaterials (CMNM), comprising cellulose microfibrils (CMF), nanofibrils (CNF), and nanocrystals (CNC), are being recognized as promising bio-nanomaterials due to their natural and renewable source, attractive properties, and potential for applications with industrial and economical value. Thus, it is crucial to investigate their potential toxicity before starting their production at a larger scale. The present study aimed at evaluating the cell internalization and in vitro cytotoxicity and genotoxicity of CMNM as compared to two multi-walled carbon nanotubes (MWCNT), NM-401 and NM-402, in A549 cells. The exposure to all studied NM, with the exception of CNC, resulted in evident cellular uptake, as analyzed by transmission electron microscopy. However, none of the CMNM induced cytotoxic effects, in contrast to the cytotoxicity observed for the MWCNT. Furthermore, no genotoxicity was observed for CNF, CNC, and NM-402 (cytokinesis-block micronucleus assay), while CMF and NM-401 were able to significantly raise micronucleus frequency. Only NM-402 was able to induce ROS formation, although it did not induce micronuclei. Thus, it is unlikely that the observed CMF and NM-401 genotoxicity is mediated by oxidative DNA damage. More studies targeting other genotoxicity endpoints and cellular and molecular events are underway to allow for a more comprehensive safety assessment of these nanocelluloses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA