Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Med Virol ; 96(7): e29789, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38988206

RESUMO

Merkel cell carcinoma (MCC) is a highly aggressive skin cancer associated with integration of Merkel cell polyomavirus (MCPyV). MCPyV-encoded T-antigens (TAs) are pivotal for sustaining MCC's oncogenic phenotype, i.e., repression of TAs results in reactivation of the RB pathway and subsequent cell cycle arrest. However, the MCC cell line LoKe, characterized by a homozygous loss of the RB1 gene, exhibits uninterrupted cell cycle progression after shRNA-mediated TA repression. This unique feature allows an in-depth analysis of the effects of TAs beyond inhibition of the RB pathway, revealing the decrease in expression of stem cell-related genes upon panTA-knockdown. Analysis of gene regulatory networks identified members of the E2F family (E2F1, E2F8, TFDP1) as key transcriptional regulators that maintain stem cell properties in TA-expressing MCC cells. Furthermore, minichromosome maintenance (MCM) genes, which encodes DNA-binding licensing proteins essential for stem cell maintenance, were suppressed upon panTA-knockdown. The decline in stemness occurred simultaneously with neural differentiation, marked by the increased expression of neurogenesis-related genes such as neurexins, BTG2, and MYT1L. This upregulation can be attributed to heightened activity of PBX1 and BPTF, crucial regulators of neurogenesis pathways. The observations in LoKe were confirmed in an additional MCPyV-positive MCC cell line in which RB1 was silenced before panTA-knockdown. Moreover, spatially resolved transcriptomics demonstrated reduced TA expression in situ in a part of a MCC tumor characterized by neural differentiation. In summary, TAs are critical for maintaining stemness of MCC cells and suppressing neural differentiation, irrespective of their impact on the RB-signaling pathway.


Assuntos
Antígenos Transformantes de Poliomavirus , Antígenos Virais de Tumores , Poliomavírus das Células de Merkel , Células-Tronco Neoplásicas , Proteínas de Ligação a Retinoblastoma , Humanos , Antígenos Virais de Tumores/genética , Antígenos Virais de Tumores/metabolismo , Carcinoma de Célula de Merkel/virologia , Carcinoma de Célula de Merkel/genética , Diferenciação Celular , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Redes Reguladoras de Genes , Poliomavírus das Células de Merkel/genética , Células-Tronco Neoplásicas/virologia , Células-Tronco Neoplásicas/metabolismo , Neurônios/virologia , Proteínas de Ligação a Retinoblastoma/genética , Proteínas de Ligação a Retinoblastoma/metabolismo , Neoplasias Cutâneas/virologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Antígenos Transformantes de Poliomavirus/genética , Antígenos Transformantes de Poliomavirus/metabolismo
2.
J Transl Med ; 21(1): 267, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-37076857

RESUMO

BACKGROUND: Oral squamous cell carcinoma (OSCC), an HPV-negative head and neck cancer, frequently metastasizes to the regional lymph nodes but only occasionally beyond. Initial phases of metastasis are associated with an epithelial-mesenchymal transition (EMT), while the consolidation phase is associated with mesenchymal-epithelial transition (MET). This dynamic is referred to as epithelial-mesenchymal plasticity (EMP). While it is known that EMP is essential for cancer cell invasion and metastatic spread, less is known about the heterogeneity of EMP states and even less about the heterogeneity between primary and metastatic lesions. METHODS: To assess both the heterogeneity of EMP states in OSCC cells and their effects on stromal cells, we performed single-cell RNA sequencing (scRNAseq) of 5 primary tumors, 9 matching metastatic and 5 tumor-free lymph nodes and re-analyzed publicly available scRNAseq data of 9 additional primary tumors. For examining the cell type composition, we performed bulk transcriptome sequencing. Protein expression of selected genes were confirmed by immunohistochemistry. RESULTS: From the 23 OSCC lesions, the single cell transcriptomes of a total of 7263 carcinoma cells were available for in-depth analyses. We initially focused on one lesion to avoid confounding inter-patient heterogeneity and identified OSCC cells expressing genes characteristic of different epithelial and partial EMT stages. RNA velocity and the increase in inferred copy number variations indicated a progressive trajectory towards epithelial differentiation in this metastatic lesion, i.e., cells likely underwent MET. Extension to all samples revealed a less stringent but essentially similar pattern. Interestingly, MET cells show increased activity of the EMT-activator ZEB1. Immunohistochemistry confirmed that ZEB1 was co-expressed with the epithelial marker cornifin B in individual tumor cells. The lack of E-cadherin mRNA expression suggests this is a partial MET. Within the tumor microenvironment we found immunomodulating fibroblasts that were maintained in primary and metastatic OSCC. CONCLUSIONS: This study reveals that EMP enables different partial EMT and epithelial phenotypes of OSCC cells, which are endowed with capabilities essential for the different stages of the metastatic process, including maintenance of cellular integrity. During MET, ZEB1 appears to be functionally active, indicating a more complex role of ZEB1 than mere induction of EMT.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Metástase Linfática , Variações do Número de Cópias de DNA , Caderinas/genética , Diferenciação Celular , Transição Epitelial-Mesenquimal/genética , Linhagem Celular Tumoral , Microambiente Tumoral , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética
3.
Cancer Immunol Immunother ; 70(6): 1635-1647, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33275172

RESUMO

BACKGROUND: Combined inhibition of BRAF/MEK is an established therapy for melanoma. In addition to its canonical mode of action, effects of BRAF/MEK inhibitors on antitumor immune responses are emerging. Thus, we investigated the effect of these on adaptive immune responses. PATIENTS, METHODS AND RESULTS: Sequential tumor biopsies obtained before and during BRAF/MEK inhibitor treatment of four (n = 4) melanoma patients were analyzed. Multiplexed immunofluorescence staining of tumor tissue revealed an increased infiltration of CD4+ and CD8+ T cells upon therapy. Determination of the T-cell receptor repertoire usage demonstrated a therapy induced increase in T-cell clonotype richness and diversity. Application of the Grouping of Lymphocyte Interactions by Paratope Hotspots algorithm revealed a pre-existing immune response against melanoma differentiation and cancer testis antigens that expanded preferentially upon therapy. Indeed, most of the T-cell clonotypes found under BRAF/MEK inhibition were already present in lower numbers before therapy. This expansion appears to be facilitated by induction of T-bet and TCF7 in T cells, two transcription factors required for self-renewal and persistence of CD8+ memory T cells. CONCLUSIONS: Our results suggest that BRAF/MEK inhibition in melanoma patients allows an increased expansion of pre-existing melanoma-specific T cells by induction of T-bet and TCF7 in these.


Assuntos
Reprogramação Celular , Linfócitos do Interstício Tumoral/imunologia , MAP Quinase Quinase 1/antagonistas & inibidores , Melanoma/imunologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Biomarcadores Tumorais/análise , Regulação Neoplásica da Expressão Gênica , Humanos , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Melanoma/patologia , Prognóstico , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Fator 1 de Transcrição de Linfócitos T/genética , Fator 1 de Transcrição de Linfócitos T/metabolismo , Células Tumorais Cultivadas
4.
Blood ; 134(13): 1072-1083, 2019 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-31331920

RESUMO

It has been proposed that CD4 T-cell responses to Staphylococcus aureus (SA) can inadvertently enhance neoplastic progression in models of skin cancer and cutaneous T-cell lymphoma (CTCL). In this prospective study, we explored the effect of transient antibiotic treatment on tumor cells and disease activity in 8 patients with advanced-stage CTCL. All patients experienced significant decrease in clinical symptoms in response to aggressive, transient antibiotic treatment. In some patients, clinical improvements lasted for more than 8 months. In 6 of 8 patients, a malignant T-cell clone could be identified in lesional skin, and a significant decrease in the fraction of malignant T cells was observed following antibiotics but an otherwise unchanged treatment regimen. Immunohistochemistry, global messenger RNA expression, and cell-signaling pathway analysis indicated that transient aggressive antibiotic therapy was associated with decreased expression of interleukin-2 high-affinity receptors (CD25), STAT3 signaling, and cell proliferation in lesional skin. In conclusion, this study provides novel evidence suggesting that aggressive antibiotic treatment inhibits malignant T cells in lesional skin. Thus, we provide a novel rationale for treatment of SA in advanced CTCL.


Assuntos
Antibacterianos/uso terapêutico , Linfoma Cutâneo de Células T/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Idoso , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Linfoma Cutâneo de Células T/metabolismo , Linfoma Cutâneo de Células T/patologia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Linfócitos T/patologia
6.
Front Oncol ; 14: 1408614, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39169943

RESUMO

Background: Mycosis fungoides (MF) is the most common subtype of cutaneous T-cell lymphoma (CTCL). Comprehensive analysis of MF cells in situ and ex vivo is complicated by the fact that is challenging to distinguish malignant from reactive T cells with certainty. Methods: To overcome this limitation, we performed combined single-cell RNA (scRNAseq) and T-cell receptor TCR sequencing (scTCRseq) of skin lesions of cutaneous MF lesions from 12 patients. A sufficient quantity of living T cells was obtained from 9 patients, but 2 had to be excluded due to unclear diagnoses (coexisting CLL or revision to a fixed toxic drug eruption). Results: From the remaining patients we established single-cell mRNA expression profiles and the corresponding TCR repertoire of 18,630 T cells. TCR clonality unequivocally identified 13,592 malignant T cells. Reactive T cells of all patients clustered together, while malignant cells of each patient formed a unique cluster expressing genes typical of naive/memory, such as CD27, CCR7 and IL7R, or cytotoxic T cells, e.g., GZMA, NKG7 and GNLY. Genes encoding classic CTCL markers were not detected in all clusters, consistent with the fact that mRNA expression does not correlate linearly with protein expression. Nevertheless, we successfully pinpointed distinctive gene signatures differentiating reactive malignant from malignant T cells: keratins (KRT81, KRT86), galectins (LGALS1, LGALS3) and S100 genes (S100A4, S100A6) being overexpressed in malignant cells. Conclusions: Combined scRNAseq and scTCRseq not only allows unambiguous identification of MF cells, but also revealed marked heterogeneity between and within patients with unexpected functional phenotypes. While the correlation between mRNA and protein abundance was limited with respect to established MF markers, we were able to identify a single-cell gene expression signature that distinguishes malignant from reactive T cells.

7.
Front Oncol ; 13: 1090592, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36761972

RESUMO

Background: Sézary Syndrome (SS) is an aggressive leukemic variant of cutaneous T-cell lymphomas (CTCL). In SS patients, malignant T cells are circulating through the blood and cause erythroderma. Objective: To compare the transcriptome of single cells in blood and skin samples from a patient with advanced SS. Methods: We utilized combined single cell RNA and T-cell receptor (TCR) sequencing (scRNA-seq). Results: We scrutinized the malignant T cells in blood and skin in an unbiased manner without pre-sorting of cells. We observed different phenotypes of the same monoclonal malignant T-cell population, confirmed by TCR sequencing and inferred copy number variation analysis. Malignant T cells present in the circulating blood expressed genes resembling central memory T cells such as CCR7, IL7R and CD27. In the skin, we detected two major malignant T-cell populations: One subpopulation was closely related to the malignant T cells from the blood, while the other subpopulation expressed genes reminiscent of skin resident effector memory T cells including GZMB and NKG7. Pseudotime analysis indicated crucial transcriptomic changes in the transition of malignant T cells between blood and skin. These changes included the differential regulation of TXNIP, a putative tumor suppressor in CTCL, and the adaptation to the hypoxic conditions in the skin. Tumor cell proliferation in the skin was supported by stimulating interactions between myeloid cells and malignant T cells. Conclusions: Using scRNA-seq we detected a high degree of functional heterogeneity within the malignant T-cell population in SS and highlighted crucial differences between SS cells in blood and skin.

8.
Nat Commun ; 12(1): 346, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436641

RESUMO

Anti-PD-1 therapy is used as a front-line treatment for many cancers, but mechanistic insight into this therapy resistance is still lacking. Here we generate a humanized (Hu)-mouse melanoma model by injecting fetal liver-derived CD34+ cells and implanting autologous thymus in immune-deficient NOD-scid IL2Rγnull (NSG) mice. Reconstituted Hu-mice are challenged with HLA-matched melanomas and treated with anti-PD-1, which results in restricted tumor growth but not complete regression. Tumor RNA-seq, multiplexed imaging and immunohistology staining show high expression of chemokines, as well as recruitment of FOXP3+ Treg and mast cells, in selective tumor regions. Reduced HLA-class I expression and CD8+/Granz B+ T cells homeostasis are observed in tumor regions where FOXP3+ Treg and mast cells co-localize, with such features associated with resistance to anti-PD-1 treatment. Combining anti-PD-1 with sunitinib or imatinib results in the depletion of mast cells and complete regression of tumors. Our results thus implicate mast cell depletion for improving the efficacy of anti-PD-1 therapy.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Linfócitos do Interstício Tumoral/imunologia , Mastócitos/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Animais , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Mastócitos/efeitos dos fármacos , Melanoma/imunologia , Melanoma/patologia , Melanoma/terapia , Camundongos Transgênicos , Receptor de Morte Celular Programada 1/metabolismo , Sunitinibe/farmacologia , Sunitinibe/uso terapêutico , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
9.
Clin Cancer Res ; 26(9): 2257-2267, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31932494

RESUMO

PURPOSE: Merkel cell carcinoma (MCC) is an aggressive neuroendocrine skin cancer, which can be effectively controlled by immunotherapy with PD-1/PD-L1 checkpoint inhibitors. However, a significant proportion of patients are characterized by primary therapy resistance. Predictive biomarkers for response to immunotherapy are lacking. EXPERIMENTAL DESIGN: We applied Bayesian inference analyses on 41 patients with MCC testing various clinical and biomolecular characteristics to predict treatment response. Further, we performed a comprehensive analysis of tumor tissue-based immunologic parameters including multiplexed immunofluorescence for T-cell activation and differentiation markers, expression of immune-related genes and T-cell receptor (TCR) repertoire analyses in 18 patients, seven objective responders, and 11 nonresponders. RESULTS: Bayesian inference analyses demonstrated that among currently discussed biomarkers only unimpaired overall performance status and absence of immunosuppression were associated with response to therapy. However, in responders, a predominance of central memory T cells and expression of genes associated with lymphocyte attraction and activation was evident. In addition, TCR repertoire usage of tumor-infiltrating lymphocytes (TILs) demonstrated low T-cell clonality, but high TCR diversity in responding patients. In nonresponders, terminally differentiated effector T cells with a constrained TCR repertoire prevailed. Sequential analyses of tumor tissue obtained during immunotherapy revealed a more pronounced and diverse clonal expansion of TILs in responders indicating an impaired proliferative capacity among TILs of nonresponders upon checkpoint blockade. CONCLUSIONS: Our explorative study identified new tumor tissue-based molecular characteristics associated with response to anti-PD-1/PD-L1 therapy in MCC. These observations warrant further investigations in larger patient cohorts to confirm their potential value as predictive markers.


Assuntos
Antígeno B7-H1/antagonistas & inibidores , Carcinoma de Célula de Merkel/patologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Memória Imunológica , Linfócitos do Interstício Tumoral/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptores de Antígenos de Linfócitos T/genética , Idoso , Teorema de Bayes , Biomarcadores Tumorais/análise , Carcinoma de Célula de Merkel/tratamento farmacológico , Carcinoma de Célula de Merkel/imunologia , Carcinoma de Célula de Merkel/metabolismo , Feminino , Humanos , Masculino , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Resultado do Tratamento
10.
Cell Host Microbe ; 20(3): 381-391, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27631701

RESUMO

The cellular factor serine incorporator 5 (SERINC5) impairs HIV-1 infectivity but is antagonized by the viral Nef protein. We analyzed the anti-SERINC5 activity of Nef proteins across primate lentiviruses and examined whether SERINC5 represents a barrier to cross-species transmissions and/or within-species viral spread. HIV-1, HIV-2, and SIV Nefs counteract human, ape, monkey, and murine SERINC5 orthologs with similar potency. However, HIV-1 Nefs are more active against SERINC5 than HIV-2 Nefs, and chimpanzee SIV (SIVcpz) Nefs are more potent than those of their monkey precursors. Additionally, Nefs of HIV and most SIVs rely on the dileucine motif in the C-terminal loop for anti-SERINC5 activity, while the Nef from colobus SIV (SIVcol) evolved different inhibitory mechanisms. We also found a significant correlation between anti-SERINC5 potency and the SIV prevalence in the respective ape and monkey species. Thus, Nef-mediated SERINC5 antagonism may determine the ability of primate lentiviruses to spread within natural hosts.


Assuntos
HIV-1/patogenicidade , HIV-2/patogenicidade , Síndrome de Imunodeficiência Adquirida dos Símios/epidemiologia , Vírus da Imunodeficiência Símia/patogenicidade , Proteínas Virais Reguladoras e Acessórias/metabolismo , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo , Animais , Células Cultivadas , HIV-1/imunologia , HIV-2/imunologia , Interações Hospedeiro-Patógeno , Humanos , Camundongos , Primatas , Síndrome de Imunodeficiência Adquirida dos Símios/transmissão , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/imunologia , Fatores de Virulência/metabolismo
11.
J Cancer Res Clin Oncol ; 140(8): 1283-93, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24793644

RESUMO

BACKGROUND: The ontogenetic Wnt pathway shows almost no activity in adult tissues. In contrast, chronic lymphocytic leukemia (CLL) cells show constitutionally active Wnt signaling, which is associated with upregulated levels of pathway members such as Wnt3 and lymphoid enhancer-binding factor-1. Functionally, this results in increased resistance to apoptosis. We therefore assumed that targeting members of the pathway could reveal new therapeutic options for the treatment of CLL. METHODS: Screening a Wnt compound library with 75 Wnt modulators via ATP assay revealed Trichostatin A as an outstanding substance with strong viability decreasing effects on CLL cells and little effect on healthy peripheral blood mononuclear cells (PBMCs). Further survival analysis was performed via fluorescence-activated cell sorting analysis. RESULTS: A maximum effect was achieved after 48 h with a wide therapeutic window in contrast to PBMCs (CLL cells: 0.253 µM, PBMCs: 145.22 µM). Trichostatin A induced caspases and acted via a dual mechanism to reveal histone and non-histone targets. Histone targets were displayed in deacetylation inhibition at DNA level, and non-histone targeting was demonstrated by elevated levels of Dickkopf-related protein 1 mRNA. Primary cells of patients with critical mutations such as TP53 or those who had already undergone extensive previous treatment responded well to the treatment. Moreover, the approved histone deacetylase (HDAC) inhibitor suberoylanilidehydroxamic acid (SAHA) was not as effective as Trichostatin A (Trichostatin A: 0.253 µM, SAHA: 7.88 µM). Combining Trichostatin A with established CLL drugs fludarabine or bendamustine showed an additive effect in vitro. CONCLUSION: Taken together, Trichostatin A appears to act via a dual anti-HDAC/Wnt mechanism with a high selectivity and efficacy in CLL and therefore warrants further investigation.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Histonas/metabolismo , Ácidos Hidroxâmicos/farmacologia , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 7/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Inibidores de Histona Desacetilases/farmacologia , Humanos , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucemia Linfocítica Crônica de Células B/patologia , Leucócitos Mononucleares/efeitos dos fármacos , Deleção de Sequência , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/genética , Vorinostat
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA