Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Genome ; 62(3): 122-136, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30457888

RESUMO

Metabarcoding is a powerful, increasingly popular tool for biodiversity assessment, but it still suffers from some drawbacks (specimen destruction, separation, and size sorting). In the present study, we tested a non-destructive protocol that excludes any sample sorting, where the ethanol used for sample preserving is filtered and DNA is extracted from the filter for subsequent DNA metabarcoding. When tested on macroinvertebrate mock communities, the method was widely successful but was unable to reliably detect mollusc taxa. Three different protocols (no treatment, shaking, and freezing) were successfully applied to increase DNA release to the fixative. The protocols resulted in similar success in taxa detection (6.8-7 taxa) but differences in read numbers assigned to taxa of interest (33.8%-93.7%). In comparison to conventional bulk sample metabarcoding of environmental samples, taxa with pronounced exoskeleton and small-bodied taxa were especially underrepresented in ethanol samples. For EPT (Ephemeroptera, Plecoptera, Trichoptera) taxa, which are important for determining stream ecological status, the methods detected 46 OTUs in common, with only 4 unique to the ethanol samples and 10 to the bulk samples. These results indicate that fixative-based metabarcoding is a non-destructive, time-saving alternative for biodiversity assessments focussing on taxa used for ecological status determination. However, for a comprehensive assessment on total invertebrate biodiversity, the method may not be sufficient, and conventional bulk sample metabarcoding should be applied.


Assuntos
Biodiversidade , Código de Barras de DNA Taxonômico/métodos , DNA/genética , Fixadores/metabolismo , Moluscos/classificação , Moluscos/genética , Animais , DNA/análise
2.
Ecol Evol ; 7(17): 6918-6926, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28904771

RESUMO

Environmental bulk samples often contain many different taxa that vary several orders of magnitude in biomass. This can be problematic in DNA metabarcoding and metagenomic high-throughput sequencing approaches, as large specimens contribute disproportionately high amounts of DNA template. Thus, a few specimens of high biomass will dominate the dataset, potentially leading to smaller specimens remaining undetected. Sorting of samples by specimen size (as a proxy for biomass) and balancing the amounts of tissue used per size fraction should improve detection rates, but this approach has not been systematically tested. Here, we explored the effects of size sorting on taxa detection using two freshwater macroinvertebrate bulk samples, collected from a low-mountain stream in Germany. Specimens were morphologically identified and sorted into three size classes (body size < 2.5 × 5, 5 × 10, and up to 10 × 20 mm). Tissue powder from each size category was extracted individually and pooled based on tissue weight to simulate samples that were not sorted by biomass ("Unsorted"). Additionally, size fractions were pooled so that each specimen contributed approximately equal amounts of biomass ("Sorted"). Mock samples were amplified using four different DNA metabarcoding primer sets targeting the Cytochrome c oxidase I (COI) gene. Sorting taxa by size and pooling them proportionately according to their abundance lead to a more equal amplification of taxa compared to the processing of complete samples without sorting. The sorted samples recovered 30% more taxa than the unsorted samples at the same sequencing depth. Our results imply that sequencing depth can be decreased approximately fivefold when sorting the samples into three size classes and pooling by specimen abundance. Even coarse size sorting can substantially improve taxa detection using DNA metabarcoding. While high-throughput sequencing will become more accessible and cheaper within the next years, sorting bulk samples by specimen biomass or size is a simple yet efficient method to reduce current sequencing costs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA