Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Hum Mol Genet ; 27(11): 2012-2024, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29659833

RESUMO

Intraflagellar transport (IFT) is a bidirectional transport process that occurs along primary cilia and specialized sensory cilia, such as photoreceptor outersegments. Genes coding for various IFT components are associated with ciliopathies. Mutations in IFT172 lead to diseases ranging from isolated retinal degeneration to severe syndromic ciliopathies. In this study, we created a mouse model of IFT172-associated retinal degeneration to investigate the ocular disease mechanism. We found that depletion of IFT172 in rod photoreceptors leads to a rapid degeneration of the retina, with severely reduced electroretinography (ERG) responses by 1 month and complete outer-nuclear layer (ONL) degeneration by 2 months. We investigated molecular mechanisms of degeneration and show that IFT172 protein reduction leads to mislocalization of specific photoreceptor outersegment (OS) proteins (RHO, RP1, IFT139), aberrant light-driven translocation of alpha transducin and altered localization of glioma-associated oncogene family member 1 (GLI1). This mouse model exhibits key features of the retinal phenotype observed in patients with IFT172-associated blindness and can be used for in vivo testing of ciliopathy therapies.


Assuntos
Proteínas de Transporte/genética , Cílios/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Degeneração Retiniana/genética , Proteínas Adaptadoras de Transdução de Sinal , Animais , Cílios/patologia , Proteínas do Citoesqueleto , Modelos Animais de Doenças , Eletrorretinografia , Humanos , Camundongos , Camundongos Knockout , Mutação , Retina/diagnóstico por imagem , Retina/patologia , Degeneração Retiniana/diagnóstico por imagem , Degeneração Retiniana/patologia , Células Fotorreceptoras Retinianas Bastonetes/patologia , Proteína GLI1 em Dedos de Zinco/genética
2.
Adv Exp Med Biol ; 1185: 91-96, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31884594

RESUMO

Mutations in USH2A gene account for most cases of Usher syndrome type II (USH2), characterized by a combination of congenital hearing loss and progressive vision loss. In particular, approximately 30% of USH2A patients harbor a single base pair deletion, c.2299delG, in exon 13 that creates a frameshift and premature stop codon, leading to a nonfunctional USH2A protein. The USH2A protein, also known as usherin, is an extremely large transmembrane protein (5202 aa), which limits the use of conventional AAV-mediated gene therapy; thus development of alternative approaches is required for the treatment of USH2A patients. As usherin contains multiple repetitive domains, we hypothesize that removal of one or more of those domains encoded by mutant exon(s) in the USH2A gene may reconstitute the reading frame and restore the production of a shortened yet adequately functional protein. In this study, we deleted the exon 12 of mouse Ush2a gene (corresponding to exon 13 of human USH2A) using CRISPR/Cas9-based exon-skipping approach and revealed that a shortened form of Ush2a that lacks exon 12 (Ush2a-∆Ex12) is produced and localized correctly in the cochlea. When the Ush2a-∆Ex12 allele is expressed on an Ush2a null background, the Ush2a-∆Ex12 protein can successfully restore the impaired hair cell structure and the auditory function in the Ush2a-/- mice. These results demonstrate that CRISPR/Cas9-based exon-skipping strategy holds a great therapeutic potential for the treatment of USH2A patients.


Assuntos
Proteínas da Matriz Extracelular/genética , Síndromes de Usher/terapia , Animais , Sistemas CRISPR-Cas , Éxons , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Mutação , Síndromes de Usher/genética
3.
J Neurosci ; 36(18): 5107-14, 2016 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-27147662

RESUMO

UNLABELLED: Retinal neurons use multiple strategies to fine-tune visual signal transduction, including post-translational modifications of proteins, such as addition of an isoprenyl lipid to a carboxyl-terminal cysteine in proteins that terminate with a "CAAX motif." We previously showed that RAS converting enzyme 1 (RCE1)-mediated processing of isoprenylated proteins is required for photoreceptor maintenance and function. However, it is not yet known whether the requirement for the RCE1-mediated protein processing is related to the absence of the endoproteolytic processing step, the absence of the subsequent methylation step by isoprenylcysteine methyltransferase (ICMT), or both. To approach this issue and to understand the significance of protein methylation, we generated mice lacking Icmt expression in the retina. In the absence of Icmt expression, rod and cone light-mediated responses diminished progressively. Lack of ICMT-mediated methylation led to defective association of isoprenylated transducin and cone phosphodiesterase 6 (PDE6α') with photoreceptor membranes and resulted in decreased levels of transducin, PDE6α', and cone G-protein coupled receptor kinase-1 (GRK1). In contrast to our earlier findings with retina-specific Rce1 knock-out mice, rod PDE6 in Icmt-deficient mice trafficked normally to the photoreceptor outer segment, suggesting that the failure to remove the -AAX is responsible for blocking the movement of PDE6 to the outer segment. Our findings demonstrate that carboxyl methylation of isoprenylated proteins is crucial for maintenance of photoreceptor function. SIGNIFICANCE STATEMENT: In this report, we show that an absence of isoprenylcysteine methyltransferase-mediated protein methylation leads to progressive loss of vision. Photoreceptors also degenerate, although at a slower pace than the rate of visual loss. The reduction in photoresponses is due to defective association of crucial players in phototransduction cascade. Unlike the situation with RCE1 deficiency, where both methylation and removal of -AAX were affected, the transport of isoprenylated proteins in isoprenylcysteine methyltransferase-deficient retinas was not dependent on methylation. This finding implies that the retention of the -AAX in PDE6 catalytic subunits in Rce1(-/-) mice is responsible for impeding their transport to the rod photoreceptor outer segment. In conclusion, lack of methylation of isoprenylcysteines leads to age-dependent photoreceptor dysfunction.


Assuntos
Células Fotorreceptoras de Vertebrados , Proteínas Metiltransferases/deficiência , Proteínas Metiltransferases/genética , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/metabolismo , Eletrorretinografia , Transdução de Sinal Luminoso , Camundongos , Camundongos Knockout , Neurônios/fisiologia , Processamento de Proteína Pós-Traducional/genética , Retina/citologia , Retina/metabolismo , Retina/fisiopatologia , Segmento Externo das Células Fotorreceptoras da Retina , Transtornos da Visão/genética , Transtornos da Visão/fisiopatologia
4.
Nat Biomed Eng ; 4(1): 97-110, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31937940

RESUMO

The success of base editors for the study and treatment of genetic diseases depends on the ability to deliver them in vivo to the relevant cell types. Delivery via adeno-associated viruses (AAVs) is limited by AAV packaging capacity, which precludes the use of full-length base editors. Here, we report the application of dual AAVs for the delivery of split cytosine and adenine base editors that are then reconstituted by trans-splicing inteins. Optimized dual AAVs enable in vivo base editing at therapeutically relevant efficiencies and dosages in the mouse brain (up to 59% of unsorted cortical tissue), liver (38%), retina (38%), heart (20%) and skeletal muscle (9%). We also show that base editing corrects, in mouse brain tissue, a mutation that causes Niemann-Pick disease type C (a neurodegenerative ataxia), slowing down neurodegeneration and increasing lifespan. The optimized delivery vectors should facilitate the efficient introduction of targeted point mutations into multiple tissues of therapeutic interest.


Assuntos
Adenina/metabolismo , Citosina/metabolismo , Dependovirus/fisiologia , Edição de Genes/métodos , Animais , Encéfalo/metabolismo , Vetores Genéticos/administração & dosagem , Células HEK293 , Humanos , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Retina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA