Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Biol Chem ; 300(2): 105589, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38141758

RESUMO

Several P2Y nucleotide receptors have been shown to be involved in the early stage of adipocyte differentiation in vitro and insulin resistance in obese mice; however, the exact receptor subtype(s) and its underlying molecular mechanism in relevant human cells are unclear. Here, using human primary visceral preadipocytes as a model, we found that during preadipocyte-to-mature adipocyte differentiation, the P2Y2 nucleotide receptor (P2Y2R) was the most upregulated subtype among the eight known P2Y receptors and the only one further dramatically upregulated after inflammatory TNFα treatment. Functional studies indicated that the P2Y2R induced intracellular Ca2+, ERK1/2, and JNK signaling but not the p38 pathway. In addition, stimulation of the P2Y2R suppressed basal and insulin-induced phosphorylation of AKT, accompanied by decreased GLUT4 membrane translocation and glucose uptake in mature adipocytes, suggesting a role of P2Y2R in insulin resistance. Mechanistically, we found that activation of P2Y2R did not increase lipolysis but suppressed PIP3 generation. Interestingly, activation of P2Y2R triggered Gi-protein coupling, and pertussis toxin pretreatment largely inhibited P2Y2R-mediated ERK1/2 signaling and cAMP suppression. Further, treatment of the cells with AR-C 118925XX, a selective P2Y2R antagonist, significantly inhibited adipogenesis, and P2Y2R knockout decreased mouse body weight gain with smaller eWAT mass infiltrated with fewer macrophages as compared to WT mice in response to a Western diet. Thus, we revealed that terminal adipocyte differentiation and inflammation selectively upregulate P2Y2R expression and that P2Y2R mediates insulin resistance by suppressing the AKT signaling pathway, highlighting P2Y2R as a potential new drug target to combat obesity and type-2 diabetes.


Assuntos
Adipogenia , Resistência à Insulina , Receptores Purinérgicos P2Y2 , Animais , Humanos , Camundongos , Adipócitos/citologia , Adipócitos/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Resistência à Insulina/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Purinérgicos P2Y2/genética , Receptores Purinérgicos P2Y2/metabolismo , Transdução de Sinais/genética , Células Cultivadas , Camundongos Endogâmicos C57BL , Regulação para Cima , Transportador de Glucose Tipo 4/metabolismo , Transporte Proteico/genética , Lipólise/genética , Adipogenia/genética
2.
Circ Res ; 132(1): e22-e42, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36444722

RESUMO

BACKGROUND: Excess cholesterol accumulation in lesional macrophages elicits complex responses in atherosclerosis. Epsins, a family of endocytic adaptors, fuel the progression of atherosclerosis; however, the underlying mechanism and therapeutic potential of targeting Epsins remains unknown. In this study, we determined the role of Epsins in macrophage-mediated metabolic regulation. We then developed an innovative method to therapeutically target macrophage Epsins with specially designed S2P-conjugated lipid nanoparticles, which encapsulate small-interfering RNAs to suppress Epsins. METHODS: We used single-cell RNA sequencing with our newly developed algorithm MEBOCOST (Metabolite-mediated Cell Communication Modeling by Single Cell Transcriptome) to study cell-cell communications mediated by metabolites from sender cells and sensor proteins on receiver cells. Biomedical, cellular, and molecular approaches were utilized to investigate the role of macrophage Epsins in regulating lipid metabolism and transport. We performed this study using myeloid-specific Epsin double knockout (LysM-DKO) mice and mice with a genetic reduction of ABCG1 (ATP-binding cassette subfamily G member 1; LysM-DKO-ABCG1fl/+). The nanoparticles targeting lesional macrophages were developed to encapsulate interfering RNAs to treat atherosclerosis. RESULTS: We revealed that Epsins regulate lipid metabolism and transport in atherosclerotic macrophages. Inhibiting Epsins by nanotherapy halts inflammation and accelerates atheroma resolution. Harnessing lesional macrophage-specific nanoparticle delivery of Epsin small-interfering RNAs, we showed that silencing of macrophage Epsins diminished atherosclerotic plaque size and promoted plaque regression. Mechanistically, we demonstrated that Epsins bound to CD36 to facilitate lipid uptake by enhancing CD36 endocytosis and recycling. Conversely, Epsins promoted ABCG1 degradation via lysosomes and hampered ABCG1-mediated cholesterol efflux and reverse cholesterol transport. In a LysM-DKO-ABCG1fl/+ mouse model, enhanced cholesterol efflux and reverse transport due to Epsin deficiency was suppressed by the reduction of ABCG1. CONCLUSIONS: Our findings suggest that targeting Epsins in lesional macrophages may offer therapeutic benefits for advanced atherosclerosis by reducing CD36-mediated lipid uptake and increasing ABCG1-mediated cholesterol efflux.


Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Camundongos , Placa Aterosclerótica/metabolismo , Macrófagos/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/metabolismo , Colesterol/metabolismo , Transportador 1 de Cassete de Ligação de ATP/metabolismo
3.
Arterioscler Thromb Vasc Biol ; 43(5): e124-e131, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36924233

RESUMO

BACKGROUND: Endothelial-to-mesenchymal transition (EndMT) is a dynamic process in which endothelial cells acquire mesenchymal properties and in turn contribute to tissue remodeling and growth. Previously, we found EndMT associated with mitral valve adaptation after myocardial infarction. Furthermore, mitral valve endothelial cells collected at 6 months post-myocardial infarction expressed the pan-leukocyte marker CD45 and EndMT markers. Additionally, mitral valve endothelial cells induced to undergo EndMT with TGF (transforming growth factor)-ß1 strongly coexpressed CD45 but not CD11b or CD14. Pharmacologic inhibition of the CD45 PTPase (protein tyrosine phosphatase) domain in mitral valve endothelial cells blocked TGFß-induced EndMT. This prompted us to speculate that, downstream of TGFß, CD45 induces EndMT. METHODS: We activated the endogenous CD45 promoter in human endothelial colony forming cells (ECFCs) using CRISPR (cluster regularly interspaced short palindromic repeats)/inactive Cas9 (CRISPR-associated protein 9) transcriptional activation. Bulk RNA sequencing was performed on control ECFCs and CD45-positive ECFCs to identify transcriptomic changes. Three functional assays-cellular migration, collagen gel contraction, and transendothelial electrical resistance-were conducted to assess mesenchymal properties in CD45-positive ECFCs. RESULTS: Activation of the endogenous CD45 promoter in ECFC and 3 additional sources of endothelial cells induced expression of several genes implicated in EndMT. In addition, CD45-positive ECFCs showed increased migration, a hallmark of EndMT, increased collagen gel contraction, a hallmark of mesenchymal cells, and decreased cell-cell barrier integrity, indicating reduced endothelial function. CONCLUSIONS: CD45 is sufficient to incite an EndMT phenotype and acquisition of mesenchymal cell properties in normal human ECFCs. We speculate that CD45, through its C-terminal PTPase domain, initiates signaling events that drive EndMT.


Assuntos
Células Endoteliais , Infarto do Miocárdio , Humanos , Células Cultivadas , Células Endoteliais/metabolismo , Transição Epitelial-Mesenquimal , Infarto do Miocárdio/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
4.
Arterioscler Thromb Vasc Biol ; 43(1): e1-e10, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36453280

RESUMO

Lymphatic vessels are low-pressure, blind-ended tubular structures that play a crucial role in the maintenance of tissue fluid homeostasis, immune cell trafficking, and dietary lipid uptake and transport. Emerging research has indicated that the promotion of lymphatic vascular growth, remodeling, and function can reduce inflammation and diminish disease severity in several pathophysiologic conditions. In particular, recent groundbreaking studies have shown that lymphangiogenesis, which describes the formation of new lymphatic vessels from the existing lymphatic vasculature, can be beneficial for the alleviation and resolution of metabolic and cardiovascular diseases. Therefore, promoting lymphangiogenesis represents a promising therapeutic approach. This brief review summarizes the most recent findings related to the modulation of lymphatic function to treat metabolic and cardiovascular diseases such as obesity, myocardial infarction, atherosclerosis, and hypertension. We also discuss experimental and therapeutic approaches to enforce lymphatic growth and remodeling as well as efforts to define the molecular and cellular mechanisms underlying these processes.


Assuntos
Vasos Linfáticos , Doenças Metabólicas , Infarto do Miocárdio , Humanos , Linfangiogênese , Vasos Linfáticos/metabolismo , Coração , Infarto do Miocárdio/metabolismo , Doenças Metabólicas/metabolismo
5.
iScience ; 26(6): 106898, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37378329

RESUMO

Metformin, created in 1922, has been the first-line therapy for treating type 2 diabetes mellitus for almost 70 years; however, its mechanism of action remains controversial, partly because most prior studies used supratherapeutic concentrations exceeding 1 mM despite therapeutical blood concentrations of metformin being less than 40 µM. Here we report metformin, at 10-30 µM, blocks high glucose-stimulated ATP secretion from hepatocytes mediating its antihyperglycemic action. Following glucose administration, mice demonstrate increased circulating ATP, which is prevented by metformin. Extracellular ATP through P2Y2 receptors (P2Y2R) suppresses PIP3 production, compromising insulin-induced AKT activation while promoting hepatic glucose production. Furthermore, metformin-dependent improvements in glucose tolerance are abolished in P2Y2R-null mice. Thus, removing the target of extracellular ATP, P2Y2R, mimics the effects of metformin, revealing a new purinergic antidiabetic mechanism for metformin. Besides unraveling long-standing questions in purinergic control of glucose homeostasis, our findings provide new insights into the pleiotropic actions of metformin.

6.
Front Cardiovasc Med ; 9: 1031293, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36247464

RESUMO

The efficient phagocytic clearance of dying cells and apoptotic cells is one of the processes that is essential for the maintenance of physiologic tissue function and homeostasis, which is termed "efferocytosis." Under normal conditions, "find me" and "eat me" signals are released by apoptotic cells to stimulate the engulfment and efferocytosis of apoptotic cells. In contrast, abnormal efferocytosis is related to chronic and non-resolving inflammatory diseases such as atherosclerosis. In the initial steps of atherosclerotic lesion development, monocyte-derived macrophages display efficient efferocytosis that restricts plaque progression; however, this capacity is reduced in more advanced lesions. Macrophage reprogramming as a result of the accumulation of apoptotic cells and augmented inflammation accounts for this diminishment of efferocytosis. Furthermore, defective efferocytosis plays an important role in necrotic core formation, which triggers plaque rupture and acute thrombotic cardiovascular events. Recent publications have focused on the essential role of macrophage efferocytosis in cardiac pathophysiology and have pointed toward new therapeutic strategies to modulate macrophage efferocytosis for cardiac tissue repair. In this review, we discuss the molecular and cellular mechanisms that regulate efferocytosis in vascular cells, including macrophages and other phagocytic cells and detail how efferocytosis-related molecules contribute to the maintenance of vascular hemostasis and how defective efferocytosis leads to the formation and progression of atherosclerotic plaques.

7.
Cells ; 11(11)2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35681530

RESUMO

Endothelial-to-mesenchymal transition (EndoMT) is the process of endothelial cells progressively losing endothelial-specific markers and gaining mesenchymal phenotypes. In the normal physiological condition, EndoMT plays a fundamental role in forming the cardiac valves of the developing heart. However, EndoMT contributes to the development of various cardiovascular diseases (CVD), such as atherosclerosis, valve diseases, fibrosis, and pulmonary arterial hypertension (PAH). Therefore, a deeper understanding of the cellular and molecular mechanisms underlying EndoMT in CVD should provide urgently needed insights into reversing this condition. This review summarizes a 30-year span of relevant literature, delineating the EndoMT process in particular, key signaling pathways, and the underlying regulatory networks involved in CVD.


Assuntos
Doenças Cardiovasculares , Hipertensão Pulmonar , Doenças Cardiovasculares/metabolismo , Células Endoteliais/metabolismo , Endotélio/metabolismo , Transição Epitelial-Mesenquimal/genética , Humanos , Hipertensão Pulmonar/metabolismo
8.
Eur J Pharmacol ; 891: 173706, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33152337

RESUMO

Small molecular chemicals targeting individual subtype of G proteins including Gs, Gi/o and Gq has been lacking, except for pertussis toxin being an established selective peptide inhibitor of the Gi/o protein. Recently, a cyclic depsipeptide compound YM-254890 isolated from culture broth of Chromobacterium sp. was reported as a selective inhibitor for the Gq protein by blocking GDP exchange of GTP on the α subunit of Gq complex. However, functional selectivity of YM-254890 towards various G proteins was not fully characterized, primarily due to its restricted availability before 2017. Here, using human coronary artery endothelial cells as a model, we performed a systemic pharmacological evaluation on the functional selectivity of YM-254890 on multiple G protein-mediated receptor signaling. First, we confirmed that YM-254890, at 30 nM, abolished UTP-activated P2Y2 receptor-mediated Ca2+ signaling and ERK1/2 phosphorylation, indicating its potent inhibition on the Gq protein. However, we unexpectedly found that YM-254890 also significantly suppressed cAMP elevation and ERK1/2 phosphorylation induced by multiple Gs-coupled receptors including ß2-adrenegic, adenosine A2 and PGI2 receptors. Surprisingly, although YM-254890 had no impact on CXCR4/Gi/o protein-mediated suppression of cAMP production, it abolished ERK1/2 activation. Further, no cellular toxicity was observed for YM-254890, and it neither affected A23187- or thapsigargin-induced Ca2+ signaling, nor forskolin-induced cAMP elevation and growth factor-induced MAPK signaling. We conclude that YM-254890 is not a selective inhibitor for Gq protein; instead, it acts as a broad-spectrum inhibitor for Gq and Gs proteins and exhibits a biased inhibition on Gi/o signaling, without affecting non-GPCR-mediated cellular signaling.


Assuntos
Vasos Coronários/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Subunidades alfa de Proteínas de Ligação ao GTP/antagonistas & inibidores , Peptídeos Cíclicos/farmacologia , Sinalização do Cálcio , Células Cultivadas , Vasos Coronários/enzimologia , AMP Cíclico/metabolismo , Células Endoteliais/enzimologia , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/antagonistas & inibidores , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/antagonistas & inibidores , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/antagonistas & inibidores , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA