Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Environ Sci Technol ; 56(2): 750-760, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34978436

RESUMO

Current chemical transport models generally use a constant secondary organic aerosol (SOA) yield to represent SOA formation from aromatic compounds under low NOx conditions. However, a wide range of SOA yields (10 to 42%) from m-xylene under low NOx conditions is observed in this study. The chamber HO2/RO2 ratio is identified as a key factor explaining SOA yield variability: higher SOA yields are observed for runs with a higher HO2/RO2 ratio. The RO2 + RO2 pathway, which can be increasingly significant under low NOx and HO2/RO2 conditions, shows a lower SOA-forming potential compared to the RO2 + HO2 pathway. While the traditional low-NOx chamber experiments are commonly used to represent the RO2 + HO2 pathway, this study finds that the impacts of the RO2 + RO2 pathway cannot be ignored under certain conditions. We provide guidance on how to best control for these two pathways in conducting chamber experiments to best obtain SOA yield curves and quantify the contributions from each pathway. On the global scale, the chemical transport model GEOS-Chem is used to identify regions characterized by lower surface HO2/RO2 ratios, suggesting that the RO2 + RO2 pathway is more likely to prove significant to overall SOA yields in those regions. Current models generally do not consider the RO2 + RO2 impacts on aromatic SOA formation, but preliminary sensitivity tests with updated SOA yield parameters based on such a pathway suggest that without this consideration, some types of SOA may be overestimated in regions with lower HO2/RO2 ratios.


Assuntos
Poluentes Atmosféricos , Aerossóis/química , Poluentes Atmosféricos/análise , Modelos Químicos , Compostos Orgânicos/química
2.
Environ Pollut ; 282: 117069, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33831626

RESUMO

A comprehensive study on the effects of photochemical aging on exhaust emissions from a vehicle equipped with a gasoline direct injection engine when operated over seven different driving cycles was assessed using an oxidation flow reactor. Both primary emissions and secondary aerosol production were measured over the Federal Test Procedure (FTP), LA92, New European Driving Cycle (NEDC), US06, and the Highway Fuel Economy Test (HWFET), as well as over two real-world cycles developed by the California Department of Transportation (Caltrans) mimicking typical highway driving conditions. We showed that the emissions of primary particles were largely depended on cold-start conditions and acceleration events. Secondary organic aerosol (SOA) formation also exhibited strong dependence on the cold-start cycles and correlated well with SOA precursor emissions (i.e., non-methane hydrocarbons, NMHC) during both cold-start and hot-start cycles (correlation coefficients 0.95-0.99), with overall emissions of ∼68-94 mg SOA per g NMHC. SOA formation significantly dropped during the hot-running phases of the cycles, with simultaneous increases in nitrate and ammonium formation as a result of the higher nitrogen oxide (NOx) and ammonia emissions. Our findings suggest that more SOA will be produced during congested, slow speed, and braking events in highways.


Assuntos
Poluentes Atmosféricos , Condução de Veículo , Aerossóis , Poluentes Atmosféricos/análise , Gasolina/análise , Oxirredução , Emissões de Veículos/análise
3.
Environ Pollut ; 266(Pt 3): 115404, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32829034

RESUMO

New environmental regulations are mandating cleaner fuels and lower emissions from all maritime operations. Natural gas (NG) is a fuel that enables mariners to meet regulations; however, emissions data from maritime operations with natural gas is limited. We measured emissions of criteria, toxic and greenhouse pollutants from a dual-fuel marine engine running either on diesel fuel or NG as well as engine activity and analyzed the impacts on pollutants, health, and climate change. Results showed that particulate matter (PM), black carbon (BC), nitric oxides (NOx), and carbon dioxide (CO2) were reduced by about 93%, 97%, 92%, and 18%, respectively when switching from diesel to NG. Reductions of this magnitude provide a valuable tool for the many port communities struggling with meeting air quality standards. While these pollutants were reduced, formaldehyde (HCHO), carbon monoxide (CO) and methane (CH4) increased several-fold. A health risk assessment of exhaust plume focused on when the vessel was stationary, and at-berth showed the diesel plume increased long-term health risk and the NG plume increased short-term health risk. An analysis of greenhouse gases (GHGs) and BC was performed and revealed that, on a hundred year basis, the whole fuel cycle global warming potential (GWP) per kWh including well-to-tank and exhaust was 50% to few times higher than that of diesel at lower engine loads, but that it was similar at 75% load and lower at higher loads. Mitigation strategies for further reducing pollutants from NG exhaust are discussed and showed potential for reducing short-term health risks and climate impacts.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/análise , Gasolina/análise , Gás Natural , Material Particulado/análise , Emissões de Veículos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA