Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Immunol ; 210(11): 1771-1789, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37017564

RESUMO

The type IV IFN (IFN-υ) is reported in vertebrates from fish to primary mammals with IFN-υR1 and IL-10R2 as receptor subunits. In this study, the proximal promoter of IFN-υ was identified in the amphibian model, Xenopus laevis, with functional IFN-sensitive responsive element and NF-κB sites, which can be transcriptionally activated by transcription factors, such as IFN regulatory factor (IRF)1, IRF3, IRF7, and p65. It was further found that IFN-υ signals through the classical IFN-stimulated gene (ISG) factor 3 (ISGF3) to induce the expression of ISGs. It seems likely that the promoter elements of the IFN-υ gene in amphibians is similar to type III IFN genes, and that the mechanism involved in IFN-υ induction is very much similar to type I and III IFNs. Using recombinant IFN-υ protein and the X. laevis A6 cell line, >400 ISGs were identified in the transcriptome, including ISGs homologous to humans. However, as many as 268 genes were unrelated to human or zebrafish ISGs, and some of these ISGs were expanded families such as the amphibian novel TRIM protein (AMNTR) family. AMNTR50, a member in the family, was found to be induced by type I, III, and IV IFNs through IFN-sensitive responsive element sites of the proximal promoter, and this molecule has a negative role in regulating the expression of type I, III, and IV IFNs. It is considered that the current study contributes to the understanding of transcription, signaling, and functional aspects of type IV IFN at least in amphibians.


Assuntos
Interferon Tipo I , Interferons , Animais , Humanos , Xenopus laevis , Interferons/genética , Interferons/metabolismo , Peixe-Zebra/metabolismo , Regulação da Expressão Gênica , Transdução de Sinais , Interferon Tipo I/metabolismo , Mamíferos/metabolismo
2.
Fish Shellfish Immunol ; 150: 109662, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38821229

RESUMO

SIRT6, a key member of the sirtuin family, plays a pivotal role in regulating a number of vital biological processes, including energy metabolism, oxidative stress, and immune system modulation. Nevertheless, the function of SIRT6 in bony fish, particularly in the context of antiviral immune response, remains largely unexplored. In this study, a sirt6 was cloned and characterized in a commercial fish, the Chinese perch (Siniperca chuatsi). The SIRT6 possesses conserved SIR2 domain with catalytic core region when compared with other vertebrates. Tissue distribution analysis indicated that sirt6 was expressed in all detected tissues, and the sirt6 was significantly induced following infection of infectious haemorrhagic syndrome virus (IHSV). The overexpression of SIRT6 resulted in significant upregulation of interferon-stimulated genes (ISGs), such as viperin, mx, isg15, irf3 and ifp35, and inhibited viral replication. It was further found that SIRT6 was located in nucleus and could enhance the expression of ISGs induced by type I and II IFNs. These findings may provide new information in relation with the function of SIRT6 in vertebrates, and with viral prevention strategy development in aquaculture.


Assuntos
Sequência de Aminoácidos , Doenças dos Peixes , Proteínas de Peixes , Regulação da Expressão Gênica , Imunidade Inata , Percas , Filogenia , Infecções por Rhabdoviridae , Sirtuínas , Animais , Sirtuínas/genética , Sirtuínas/imunologia , Sirtuínas/metabolismo , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/química , Imunidade Inata/genética , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/veterinária , Regulação da Expressão Gênica/imunologia , Percas/imunologia , Alinhamento de Sequência/veterinária , Perfilação da Expressão Gênica/veterinária
3.
Front Immunol ; 15: 1374368, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38715616

RESUMO

NOD1 and NOD2 as two representative members of nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family play important roles in antimicrobial immunity. However, transcription mechanism of nod1 and nod2 and their signal circle are less understood in teleost fish. In this study, with the cloning of card9 and ripk2 in Chinese perch, the interaction between NOD1, NOD2, and CARD9 and RIPK2 were revealed through coimmunoprecipitation and immunofluorescence assays. The overexpression of NOD1, NOD2, RIPK2 and CARD9 induced significantly the promoter activity of NF-κB, IFNh and IFNc. Furthermore, it was found that nod1 and nod2 were induced by poly(I:C), type I IFNs, RLR and even NOD1/NOD2 themselves through the ISRE site of their proximal promoters. It is thus indicated that nod1 and nod2 can be classified also as ISGs due to the presence of ISRE in their proximal promoter, and their expression can be mechanistically controlled through PRR pathway as well as through IFN signaling in antiviral immune response.


Assuntos
Proteínas de Peixes , Proteína Adaptadora de Sinalização NOD1 , Proteína Adaptadora de Sinalização NOD2 , Proteína Serina-Treonina Quinase 2 de Interação com Receptor , Transdução de Sinais , Animais , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/genética , Proteína Adaptadora de Sinalização NOD2/genética , Proteína Adaptadora de Sinalização NOD2/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Proteínas de Peixes/imunologia , Percas/genética , Percas/imunologia , Percas/metabolismo , Interferons/metabolismo , Interferons/genética , Regiões Promotoras Genéticas , Transcrição Gênica , Imunidade Inata/genética , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA