Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(36): e2301954120, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37639595

RESUMO

Accurate understanding of permafrost dynamics is critical for evaluating and mitigating impacts that may arise as permafrost degrades in the future; however, existing projections have large uncertainties. Studies of how permafrost responded historically during Earth's past warm periods are helpful in exploring potential future permafrost behavior and to evaluate the uncertainty of future permafrost change projections. Here, we combine a surface frost index model with outputs from the second phase of the Pliocene Model Intercomparison Project to simulate the near-surface (~3 to 4 m depth) permafrost state in the Northern Hemisphere during the mid-Pliocene warm period (mPWP, ~3.264 to 3.025 Ma). This period shares similarities with the projected future climate. Constrained by proxy-based surface air temperature records, our simulations demonstrate that near-surface permafrost was highly spatially restricted during the mPWP and was 93 ± 3% smaller than the preindustrial extent. Near-surface permafrost was present only in the eastern Siberian uplands, Canadian high Arctic Archipelago, and northernmost Greenland. The simulations are similar to near-surface permafrost changes projected for the end of this century under the SSP5-8.5 scenario and provide a perspective on the potential permafrost behavior that may be expected in a warmer world.

2.
Sci Bull (Beijing) ; 66(11): 1146-1150, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36654348

RESUMO

Elevation-dependent warming (EDW), whereby warming rates are stratified by elevation, may increase the threat to the life-supporting solid water reservoir on the Tibetan Plateau. Previous studies have debated whether EDW exists and how it is driven. Using temperatures at 133 weather stations on the Tibetan Plateau during 17 different periods generated using a 30-year sliding window over 1973-2018, this study finds that the existence of EDW varies as the period moves forward, and critically it has become more severe over time. During the early part of the record with weaker regional warming, there were limited changes in snow depth and no EDW, but as time advances and regional warming intensifies, snow depth declines significantly at higher elevations, causing development of EDW. We conclude that enhanced regional warming has caused decreases in snow depth, largely controlling the pattern of EDW on the Tibetan Plateau. This may explain contrasting conclusions on EDW from previous studies which have used data for different periods, and our findings support enhanced EDW and more severe depletion of the Tibetan Plateau solid water reserves in a warmer future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA