Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36679705

RESUMO

Digitization of most of the services that people use in their everyday life has, among others, led to increased needs for cybersecurity. As digital tools increase day by day and new software and hardware launch out-of-the box, detection of known existing vulnerabilities, or zero-day as they are commonly known, becomes one of the most challenging situations for cybersecurity experts. Zero-day vulnerabilities, which can be found in almost every new launched software and/or hardware, can be exploited instantly by malicious actors with different motives, posing threats for end-users. In this context, this study proposes and describes a holistic methodology starting from the generation of zero-day-type, yet realistic, data in tabular format and concluding to the evaluation of a Neural Network zero-day attacks' detector which is trained with and without synthetic data. This methodology involves the design and employment of Generative Adversarial Networks (GANs) for synthetically generating a new and larger dataset of zero-day attacks data. The newly generated, by the Zero-Day GAN (ZDGAN), dataset is then used to train and evaluate a Neural Network classifier for zero-day attacks. The results show that the generation of zero-day attacks data in tabular format reaches an equilibrium after about 5000 iterations and produces data that are almost identical to the original data samples. Last but not least, it should be mentioned that the Neural Network model that was trained with the dataset containing the ZDGAN generated samples outperformed the same model when the later was trained with only the original dataset and achieved results of high validation accuracy and minimal validation loss.


Assuntos
Aprendizado Profundo , Humanos , Segurança Computacional , Decoração de Interiores e Mobiliário , Motivação , Redes Neurais de Computação
2.
Sensors (Basel) ; 23(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37836988

RESUMO

Data scarcity in the healthcare domain is a major drawback for most state-of-the-art technologies engaging artificial intelligence. The unavailability of quality data due to both the difficulty to gather and label them as well as due to their sensitive nature create a breeding ground for data augmentation solutions. Parkinson's Disease (PD) which can have a wide range of symptoms including motor impairments consists of a very challenging case for quality data acquisition. Generative Adversarial Networks (GANs) can help alleviate such data availability issues. In this light, this study focuses on a data augmentation solution engaging Generative Adversarial Networks (GANs) using a freezing of gait (FoG) symptom dataset as input. The data generated by the so-called FoGGAN architecture presented in this study are almost identical to the original as concluded by a variety of similarity metrics. This highlights the significance of such solutions as they can provide credible synthetically generated data which can be utilized as training dataset inputs to AI applications. Additionally, a DNN classifier's performance is evaluated using three different evaluation datasets and the accuracy results were quite encouraging, highlighting that the FOGGAN solution could lead to the alleviation of the data shortage matter.


Assuntos
Transtornos Neurológicos da Marcha , Doença de Parkinson , Humanos , Inteligência Artificial , Marcha
3.
Sensors (Basel) ; 23(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36616956

RESUMO

The unceasingly increasing needs for data acquisition, storage and analysis in transportation systems have led to the adoption of new technologies and methods in order to provide efficient and reliable solutions. Both highways and vehicles, nowadays, host a vast variety of sensors collecting different types of highly fluctuating data such as speed, acceleration, direction, and so on. From the vast volume and variety of these data emerges the need for the employment of big data techniques and analytics in the context of state-of-the-art intelligent transportation systems (ITS). Moreover, the scalability needs of fleet and traffic management systems point to the direction of designing and deploying distributed architecture solutions that can be expanded in order to avoid technological and/or technical entrapments. Based on the needs and gaps detected in the literature as well as the available technologies for data gathering, storage and analysis for ITS, the aim of this study is to provide a distributed architecture platform to address these deficiencies. The architectural design of the system proposed, engages big data frameworks and tools (e.g., NoSQL Mongo DB, Apache Hadoop, etc.) as well as analytics tools (e.g., Apache Spark). The main contribution of this study is the introduction of a holistic platform that can be used for the needs of the ITS domain offering continuous collection, storage and data analysis capabilities. To achieve that, different modules of state-of-the-art methods and tools were utilized and combined in a unified platform that supports the entire cycle of data acquisition, storage and analysis in a single point. This leads to a complete solution for ITS applications which lifts the limitations imposed in legacy and current systems by the vast amounts of rapidly changing data, while offering a reliable system for acquisition, storage as well as timely analysis and reporting capabilities of these data.


Assuntos
Big Data , Ciência de Dados , Registros , Análise de Dados
4.
Sensors (Basel) ; 22(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35214486

RESUMO

The rapid evolution of sensors and communication technologies has led to the production and transfer of mass data streams from vehicles either inside their electronic units or to the outside world using the internet infrastructure. The "outside world", in most cases, consists of third-party applications, such as fleet or traffic management control centers, which utilize vehicular data for reporting and monitoring functionalities. Such applications, in most cases, in order to facilitate their needs, require the exchange and processing of vast amounts of data which can be handled by the so-called Big Data technologies. The purpose of this study is to present a hybrid platform suitable for data collection, storing and analysis enhanced with quality control actions. In particular, the collected data contain various formats originating from different vehicle sensors and are stored in the aforementioned platform in a continuous way. The stored data in this platform must be checked in order to determine and validate them in terms of quality. To do so, certain actions, such as missing values checks, format checks, range checks, etc., must be carried out. The results of the quality control functions are presented herein, and useful conclusions are drawn in order to avoid possible data quality problems which may occur in further analysis and use of the data, e.g., for training of artificial intelligence models.

5.
Sensors (Basel) ; 22(11)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35684619

RESUMO

The extreme rise of the Internet of Things and the increasing access of people to web applications have led to the expanding use of diverse e-commerce solutions, which was even more obvious during the COVID-19 pandemic. Large amounts of heterogeneous data from multiple sources reside in e-commerce environments and are often characterized by data source inaccuracy and unreliability. In this regard, various fusion techniques can play a crucial role in addressing such challenges and are extensively used in numerous e-commerce applications. This paper's goal is to conduct an academic literature review of prominent fusion-based solutions that can assist in tackling the everyday challenges the e-commerce environments face as well as in their needs to make more accurate and better business decisions. For categorizing the solutions, a novel 4-fold categorization approach is introduced including product-related, economy-related, business-related, and consumer-related solutions, followed by relevant subcategorizations, based on the wide variety of challenges faced by e-commerce. Results from the 65 fusion-related solutions included in the paper show a great variety of different fusion applications, focusing on the fusion of already existing models and algorithms as well as the existence of a large number of different machine learning techniques focusing on the same e-commerce-related challenge.


Assuntos
COVID-19 , Pandemias , Algoritmos , Comércio , Humanos
6.
Sensors (Basel) ; 21(14)2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34300447

RESUMO

In the last few decades, vehicles are equipped with a plethora of sensors which can provide useful measurements and diagnostics for both the vehicle's condition as well as the driver's behaviour. Furthermore, the rapid increase for transportation needs of people and goods together with the evolution of Information and Communication Technologies (ICT) push the transportation domain towards a new more intelligent and efficient era. The reduction of CO2 emissions and the minimization of the environmental footprint is, undeniably, of utmost importance for the protection of the environment. In this light, it is widely acceptable that the driving behaviour is directly associated with the vehicle's fuel consumption and gas emissions. Thus, given the fact that, nowadays, vehicles are equipped with sensors that can collect a variety of data, such as speed, acceleration, fuel consumption, direction, etc. is more feasible than ever to put forward solutions which aim not only to monitor but also improve the drivers' behaviour from an environmental point of view. The approach presented in this paper describes a holistic integrated platform which combines well-known machine and deep learning algorithms together with open-source-based tools in order to gather, store, process, analyze and correlate different data flows originating from vehicles. Particularly, data streamed from different vehicles are processed and analyzed with the utilization of clustering techniques in order to classify the driver's behaviour as eco-friendly or not, followed by a comparative analysis of supervised machine and deep learning algorithms in the given labelled dataset.


Assuntos
Condução de Veículo , Aprendizado Profundo , Aceleração , Humanos , Meios de Transporte
7.
Sensors (Basel) ; 21(22)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34833551

RESUMO

The upcoming agricultural revolution, known as Agriculture 4.0, integrates cutting-edge Information and Communication Technologies in existing operations. Various cyber threats related to the aforementioned integration have attracted increasing interest from security researchers. Network traffic analysis and classification based on Machine Learning (ML) methodologies can play a vital role in tackling such threats. Towards this direction, this research work presents and evaluates different ML classifiers for network traffic classification, i.e., K-Nearest Neighbors (KNN), Support Vector Classification (SVC), Decision Tree (DT), Random Forest (RF) and Stochastic Gradient Descent (SGD), as well as a hard voting and a soft voting ensemble model of these classifiers. In the context of this research work, three variations of the NSL-KDD dataset were utilized, i.e., initial dataset, undersampled dataset and oversampled dataset. The performance of the individual ML algorithms was evaluated in all three dataset variations and was compared to the performance of the voting ensemble methods. In most cases, both the hard and the soft voting models were found to perform better in terms of accuracy compared to the individual models.


Assuntos
Algoritmos , Aprendizado de Máquina , Agricultura , Análise por Conglomerados , Política
8.
Sensors (Basel) ; 20(22)2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33198160

RESUMO

The agriculture sector has held a major role in human societies across the planet throughout history. The rapid evolution in Information and Communication Technologies (ICT) strongly affects the structure and the procedures of modern agriculture. Despite the advantages gained from this evolution, there are several existing as well as emerging security threats that can severely impact the agricultural domain. The present paper provides an overview of the main existing and potential threats for agriculture. Initially, the paper presents an overview of the evolution of ICT solutions and how these may be utilized and affect the agriculture sector. It then conducts an extensive literature review on the use of ICT in agriculture, as well as on the associated emerging threats and vulnerabilities. The authors highlight the main ICT innovations, techniques, benefits, threats and mitigation measures by studying the literature on them and by providing a concise discussion on the possible impacts these could have on the agri-sector.


Assuntos
Agricultura , Segurança Computacional , Fazendas , Humanos , Tecnologia da Informação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA