Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
J Immunol ; 202(3): 871-882, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30578308

RESUMO

Severe respiratory virus infections feature robust local host responses that contribute to disease severity. Immunomodulatory strategies that limit virus-induced inflammation may be of critical importance, notably in the absence of antiviral vaccines. In this study, we examined the role of the pleiotropic cytokine IL-6 in acute infection with pneumonia virus of mice (PVM), a natural rodent pathogen that is related to respiratory syncytial virus and that generates local inflammation as a feature of severe infection. In contrast to Influenza A, PVM is substantially less lethal in IL-6 -/- mice than it is in wild-type, a finding associated with diminished neutrophil recruitment and reduced fluid accumulation in lung tissue. Ly6Chi proinflammatory monocytes are recruited in response to PVM via a CCR2-dependent mechanism, but they are not a major source of IL-6 nor do they contribute to lethal sequelae of infection. By contrast, alveolar macrophages are readily infected with PVM in vivo; ablation of alveolar macrophages results in prolonged survival in association with a reduction in virus-induced IL-6. Finally, as shown previously, administration of immunobiotic Lactobacillus plantarum to the respiratory tracts of PVM-infected mice promoted survival in association with diminished levels of IL-6. We demonstrated in this study that IL-6 suppression is a critical feature of the protective mechanism; PVM-infected IL-6 -/- mice responded to low doses of L. plantarum, and administration of IL-6 overcame L. plantarum-mediated protection in PVM-infected wild-type mice. Taken together, these results connect the actions of IL-6 to PVM pathogenesis and suggest cytokine blockade as a potential therapeutic modality in severe infection.


Assuntos
Interleucina-6/imunologia , Vírus da Pneumonia Murina/imunologia , Infecções por Pneumovirus/imunologia , Animais , Inflamação , Interleucina-6/farmacologia , Lactobacillus plantarum/imunologia , Pulmão/imunologia , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/virologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Probióticos/administração & dosagem , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/farmacologia , Sistema Respiratório/imunologia , Sistema Respiratório/virologia
2.
J Immunol ; 203(2): 520-531, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31182481

RESUMO

Eosinophilic leukocytes develop in the bone marrow and migrate from peripheral blood to tissues, where they maintain homeostasis and promote dysfunction via release of preformed immunomodulatory mediators. In this study, we explore human eosinophil heterogeneity with a specific focus on naturally occurring variations in cytokine content. We found that human eosinophil-associated cytokines varied on a continuum from minimally (coefficient of variation [CV] ≤ 50%) to moderately variable (50% < CV ≤ 90%). Within the moderately variable group, we detected immunoreactive IL-27 (953 ± 504 pg/mg lysate), a mediator not previously associated with human eosinophils. However, our major finding was the distinct and profound variability of eosinophil-associated IL-16 (CV = 103%). Interestingly, eosinophil IL-16 content correlated directly with body mass index (R 2 = 0.60, ***p < 0.0001) in one donor subset. We found no direct correlation between eosinophil IL-16 content and donor age, sex, total leukocytes, lymphocytes, or eosinophils (cells per microliter), nor was there any relationship between IL-16 content and the characterized -295T/C IL-16 promoter polymorphism. Likewise, although eosinophil IL-1ß, IL-1α, and IL-6 levels correlated with one another, there was no direct association between any of these cytokines and eosinophil IL-16 content. Finally, a moderate increase in total dietary fat resulted in a 2.7-fold reduction in eosinophil IL-16 content among C57BL/6-IL5tg mice. Overall, these results suggest that relationships between energy metabolism, eosinophils, and IL-16 content are not direct or straightforward. Nonetheless, given our current understanding of the connections between asthma and obesity, these findings suggest important eosinophil-focused directions for further exploration.


Assuntos
Citocinas/imunologia , Eosinófilos/imunologia , Interleucina-16/imunologia , Adulto , Idoso , Animais , Asma/imunologia , Medula Óssea/imunologia , Feminino , Humanos , Contagem de Leucócitos/métodos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Adulto Jovem
3.
J Immunol ; 203(2): 476-484, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31142604

RESUMO

Eosinophils are present in muscle lesions associated with Duchenne muscular dystrophy and dystrophin-deficient mdx mice that phenocopy this disorder. Although it has been hypothesized that eosinophils promote characteristic inflammatory muscle damage, this has not been fully examined. In this study, we generated mice with the dystrophin mutation introduced into PHIL, a strain with a transgene that directs lineage-specific eosinophil ablation. We also explored the impact of eosinophil overabundance on dystrophinopathy by introducing the dystrophin mutation into IL-5 transgenic mice. We evaluated the degree of eosinophil infiltration in association with myofiber size distribution, centralized nuclei, serum creatine kinase, and quantitative histopathology scores. Among our findings, eosinophils were prominent in the quadriceps muscles of 4-wk-old male mdx mice but no profound differences were observed in the quantitative measures of muscle damage when comparing mdx versus mdx.PHIL versus mdx.IL5tg mice, despite dramatic differences in eosinophil infiltration (CD45+CD11c-Gr1-MHC class IIloSiglecF+ eosinophils at 1.2 ± 0.34% versus <0.1% versus 20 ± 7.6% of total cells, respectively). Further evaluation revealed elevated levels of eosinophil chemoatttractants eotaxin-1 and RANTES in the muscle tissue of all three dystrophin-deficient strains; eotaxin-1 concentration in muscle correlated inversely with age. Cytokines IL-4 and IL-1R antagonist were also detected in association with eosinophils in muscle. Taken together, our findings challenge the long-held perception of eosinophils as cytotoxic in dystrophin-deficient muscle; we show clearly that eosinophil infiltration is not a driving force behind acute muscle damage in the mdx mouse strain. Ongoing studies will focus on the functional properties of eosinophils in this unique microenvironment.


Assuntos
Eosinófilos/imunologia , Distrofia Muscular de Duchenne/imunologia , Animais , Modelos Animais de Doenças , Distrofina/imunologia , Feminino , Interleucina-4/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Músculo Esquelético/imunologia , Receptores de Interleucina-1/imunologia
4.
J Virol ; 90(2): 979-91, 2016 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-26537680

RESUMO

UNLABELLED: Pneumonia virus of mice (PVM) is a natural rodent pathogen that replicates in bronchial epithelial cells and reproduces many clinical and pathological features of the more severe forms of disease associated with human respiratory syncytial virus. In order to track virus-target cell interactions during acute infection in vivo, we developed rK2-PVM, bacterial artificial chromosome-based recombinant PVM strain J3666 that incorporates the fluorescent tag monomeric Katushka 2 (mKATE2). The rK2-PVM pathogen promotes lethal infection in BALB/c mice and elicits characteristic cytokine production and leukocyte recruitment to the lung parenchyma. Using recombinant virus, we demonstrate for the first time PVM infection of both dendritic cells (DCs; CD11c(+) major histocompatibility complex class II(+)) and alveolar macrophages (AMs; CD11c(+) sialic acid-binding immunoglobulin-like lectin F(+)) in vivo and likewise detect mKATE2(+) DCs in mediastinal lymph nodes from infected mice. AMs support both active virus replication and production of infectious virions. Furthermore, we report that priming of the respiratory tract with immunobiotic Lactobacillus plantarum, a regimen that results in protection against the lethal inflammatory sequelae of acute respiratory virus infection, resulted in differential recruitment of neutrophils, DCs, and lymphocytes to the lungs in response to rK2-PVM and a reduction from ∼ 40% to <10% mKATE2(+) AMs in association with a 2-log drop in the release of infectious virions. In contrast, AMs from L. plantarum-primed mice challenged with virus ex vivo exhibited no differential susceptibility to rK2-PVM. Although the mechanisms underlying Lactobacillus-mediated viral suppression remain to be fully elucidated, this study provides insight into the cellular basis of this response. IMPORTANCE: Pneumonia virus of mice (PVM) is a natural mouse pathogen that serves as a model for severe human respiratory syncytial virus disease. We have developed a fully functional recombinant PVM strain with a fluorescent reporter protein (rK2-PVM) that permits us to track infection of target cells in vivo. With rK2-PVM, we demonstrate infection of leukocytes in the lung, notably, dendritic cells and alveolar macrophages. Alveolar macrophages undergo productive infection and release infectious virions. We have shown previously that administration of immunobiotic Lactobacillus directly to the respiratory mucosa protects mice from the lethal sequelae of PVM infection in association with profound suppression of the virus-induced inflammatory response. We show here that Lactobacillus administration also limits infection of leukocytes in vivo and results in diminished release of infectious virions from alveolar macrophages. This is the first study to provide insight into the cellular basis of the antiviral impact of immunobiotic L. plantarum.


Assuntos
Fatores Imunológicos/administração & dosagem , Lactobacillus plantarum/imunologia , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/virologia , Vírus da Pneumonia Murina/imunologia , Probióticos/administração & dosagem , Sistema Respiratório/imunologia , Animais , Células Dendríticas/imunologia , Células Dendríticas/virologia , Feminino , Linfonodos/imunologia , Camundongos Endogâmicos BALB C
5.
J Biol Chem ; 290(14): 8863-75, 2015 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-25713137

RESUMO

RNase A is the prototype of an extensive family of divergent proteins whose members share a unique disulfide-bonded tertiary structure, conserved catalytic motifs, and the ability to hydrolyze polymeric RNA. Several members of this family maintain independent roles as ribonucleases and modulators of innate immunity. Here we characterize mouse eosinophil-associated RNase (Ear) 11, a divergent member of the eosinophil ribonuclease cluster, and the only known RNase A ribonuclease expressed specifically in response to Th2 cytokine stimulation. Mouse Ear 11 is differentially expressed in somatic tissues at baseline (brain ≪ liver < lung < spleen); systemic stimulation with IL-33 results in 10-5000-fold increased expression in lung and spleen, respectively. Ear 11 is also expressed in response to protective priming of the respiratory mucosa with Lactobacillus plantarum; transcripts are detected both locally in lung as well as systemically in bone marrow and spleen. Mouse Ear 11 is enzymatically active, although substantially less so than mEar 1 and mEar 2; the relative catalytic efficiency (kcat/Km) of mEar 11 is diminished ∼1000-1500-fold. However, in contrast to RNase 2/EDN and mEar 2, which have been characterized as selective chemoattractants for CD11c(+) dendritic cells, mEar 11 has prominent chemoattractant activity for F4/80(+)CD11c(-) tissue macrophages. Chemoattractant activity is not dependent on full enzymatic activity, and requires no interaction with the pattern recognition receptor, Toll-like receptor 2 (TLR2). Taken together, this work characterizes a divergent RNase A ribonuclease with a unique expression pattern and function, and highlights the versatility of this family in promoting innate immunity.


Assuntos
Proteína Catiônica de Eosinófilo/metabolismo , Macrófagos/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Primers do DNA , Proteína Catiônica de Eosinófilo/química , Proteína Catiônica de Eosinófilo/genética , Imunidade Inata , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Filogenia , Homologia de Sequência de Aminoácidos , Baço/citologia
6.
Blood ; 123(5): 743-52, 2014 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-24297871

RESUMO

Eosinophils are recruited to the airways as a prominent feature of the asthmatic inflammatory response where they are broadly perceived as promoting pathophysiology. Respiratory virus infections exacerbate established asthma; however, the role of eosinophils and the nature of their interactions with respiratory viruses remain uncertain. To explore these questions, we established acute infection with the rodent pneumovirus, pneumonia virus of mice (PVM), in 3 distinct mouse models of Th2 cytokine-driven asthmatic inflammation. We found that eosinophils recruited to the airways of otherwise naïve mice in response to Aspergillus fumigatus, but not ovalbumin sensitization and challenge, are activated by and degranulate specifically in response to PVM infection. Furthermore, we demonstrate that activated eosinophils from both Aspergillus antigen and cytokine-driven asthma models are profoundly antiviral and promote survival in response to an otherwise lethal PVM infection. Thus, although activated eosinophils within a Th2-polarized inflammatory response may have pathophysiologic features, they are also efficient and effective mediators of antiviral host defense.


Assuntos
Eosinófilos/imunologia , Pulmão/imunologia , Pulmão/virologia , Vírus da Pneumonia Murina/imunologia , Infecções por Pneumovirus/imunologia , Animais , Aspergillus fumigatus/imunologia , Asma/imunologia , Asma/microbiologia , Degranulação Celular , Eosinófilos/fisiologia , Eosinófilos/virologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ovalbumina/imunologia
7.
J Immunol ; 192(11): 5265-72, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24748495

RESUMO

We have shown previously that priming of respiratory mucosa with live Lactobacillus species promotes robust and prolonged survival from an otherwise lethal infection with pneumonia virus of mice, a property known as heterologous immunity. Lactobacillus priming results in a moderate reduction in virus recovery and a dramatic reduction in virus-induced proinflammatory cytokine production; the precise mechanisms underlying these findings remain to be elucidated. Because B cells have been shown to promote heterologous immunity against respiratory virus pathogens under similar conditions, in this study we explore the role of B cells in Lactobacillus-mediated protection against acute pneumovirus infection. We found that Lactobacillus-primed mice feature elevated levels of airway Igs IgG, IgA, and IgM and lung tissues with dense, B cell (B220(+))-enriched peribronchial and perivascular infiltrates with germinal centers consistent with descriptions of BALT. No B cells were detected in lung tissue of Lactobacillus-primed B cell deficient µMT mice or Jh mice, and Lactobacillus-primed µMT mice had no characteristic infiltrates or airway Igs. Nonetheless, we observed diminished virus recovery and profound suppression of virus-induced proinflammatory cytokines CCL2, IFN-γ, and CXCL10 in both wild-type and Lactobacillus-primed µMT mice. Furthermore, Lactobacillus plantarum-primed, B cell-deficient µMT and Jh mice were fully protected from an otherwise lethal pneumonia virus of mice infection, as were their respective wild-types. We conclude that B cells are dispensable for Lactobacillus-mediated heterologous immunity and were not crucial for promoting survival in response to an otherwise lethal pneumovirus infection.


Assuntos
Linfócitos B/imunologia , Lactobacillus/imunologia , Pulmão/imunologia , Infecções por Pneumovirus/imunologia , Pneumovirus/imunologia , Mucosa Respiratória/imunologia , Animais , Anticorpos Antibacterianos/genética , Anticorpos Antibacterianos/imunologia , Citocinas/genética , Citocinas/imunologia , Pulmão/patologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Pneumovirus/genética , Infecções por Pneumovirus/genética , Infecções por Pneumovirus/patologia , Mucosa Respiratória/patologia , Mucosa Respiratória/virologia
8.
Eur J Immunol ; 43(8): 2217-28, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23670593

RESUMO

Here, we describe a novel method via which ex vivo cultured mouse bone marrow derived eosinophils (bmEos) can be adoptively transferred into recipient mice in order to study receptor-dependent recruitment to lung tissue in vivo. Intratracheal instillation of recombinant human eotaxin-2 (hCCL24) prior to introduction of bmEos via tail vein injection resulted in an approximately fourfold increase in Siglec F-positive/CD11c-negative eosinophils in the lungs of eosinophil-deficient ΔdblGATA recipient mice compared with controls. As anticipated, bmEos generated from CCR3-gene-deleted mice did not migrate to the lung in response to hCCL24 in this model, indicating specific receptor dependence. BmEos generated from GFP-positive BALB/c mice responded similarly to hCCL24 in vitro and were detected in lung tissue of BALB/c WT as well as BALB/c ΔdblGATA eosinophil-deficient recipient mice, at approximately fourfold (at 5 h post-injection) and approximately threefold (at 24 h postinjection) over baseline, respectively. Comparable results were obtained with GFP-positive C57BL/6 bmEos responding to intratracheal hCCL24 in C57BL/6 ΔdblGATA recipient mice. The use of ex vivo cultured bmEos via one or more of these methods offers the possibility of manipulating bmEos prior to transfer into a WT or gene-deleted recipient host. Thus, this chemotaxis model represents a novel and robust tool for pharmacological studies in vivo.


Assuntos
Células da Medula Óssea/citologia , Quimiotaxia de Leucócito/imunologia , Eosinófilos/imunologia , Pulmão/imunologia , Transferência Adotiva , Animais , Células da Medula Óssea/imunologia , Antígeno CD11c/biossíntese , Células Cultivadas , Quimiocina CCL24/farmacologia , Eosinófilos/citologia , Eosinófilos/transplante , Proteínas de Fluorescência Verde/genética , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores CCR3/genética
9.
J Immunol ; 186(2): 1151-61, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21169550

RESUMO

The inflammatory response to respiratory virus infection can be complex and refractory to standard therapy. Lactobacilli, when targeted to the respiratory epithelium, are highly effective at suppressing virus-induced inflammation and protecting against lethal disease. Specifically, wild-type mice primed via intranasal inoculation with live or heat-inactivated Lactobacillus plantarum or Lactobacillus reuteri were completely protected against lethal infection with the virulent rodent pathogen, pneumonia virus of mice; significant protection (60% survival) persisted for at least 13 wk. Protection was not unique to Lactobacillus species, and it was also observed in response to priming with nonpathogenic Gram-positive Listeria innocua. Priming with live lactobacilli resulted in diminished granulocyte recruitment, diminished expression of multiple proinflammatory cytokines (CXCL10, CXCL1, CCL2, and TNF), and reduced virus recovery, although we have demonstrated clearly that absolute virus titer does not predict clinical outcome. Lactobacillus priming also resulted in prolonged survival and protection against the lethal sequelae of pneumonia virus of mice infection in MyD88 gene-deleted (MyD88(-/-)) mice, suggesting that the protective mechanisms may be TLR-independent. Most intriguing, virus recovery and cytokine expression patterns in Lactobacillus-primed MyD88(-/-) mice were indistinguishable from those observed in control-primed MyD88(-/-) counterparts. In summary, we have identified and characterized an effective Lactobacillus-mediated innate immune shield, which may ultimately serve as critical and long-term protection against infection in the absence of specific antiviral vaccines.


Assuntos
Lactobacillus plantarum/imunologia , Limosilactobacillus reuteri/imunologia , Vírus da Pneumonia Murina/imunologia , Infecções por Pneumovirus/mortalidade , Infecções por Pneumovirus/prevenção & controle , Mucosa Respiratória/imunologia , Mucosa Respiratória/microbiologia , Administração Intranasal , Animais , Antígenos Virais/metabolismo , Citocinas/antagonistas & inibidores , Citocinas/biossíntese , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Vírus da Pneumonia Murina/patogenicidade , Infecções por Pneumovirus/imunologia , Mucosa Respiratória/virologia , Replicação Viral/imunologia
10.
BMC Genomics ; 13: 40, 2012 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-22272736

RESUMO

BACKGROUND: Ribonuclease 8 is a member of the RNase A family of secretory ribonucleases; orthologs of this gene have been found only in primate genomes. RNase 8 is a divergent paralog of RNase 7, which is lysine-enriched, highly conserved, has prominent antimicrobial activity, and is expressed in both normal and diseased skin; in contrast, the physiologic function of RNase 8 remains uncertain. Here, we examine the genetic diversity of human RNase 8, a subject of significant interest given the existence of functional pseudogenes (coding sequences that are otherwise intact but with mutations in elements crucial for ribonucleolytic activity) in non-human primate genomes. RESULTS: RNase 8 expression was detected in adult human lung, spleen and testis tissue by quantitative reverse-transcription PCR. Only two single-nucleotide polymorphisms and four unique alleles were identified within the RNase 8 coding sequence; nucleotide sequence diversity (π = 0.00122 ± 0.00009 per site) was unremarkable for a human nuclear gene. We isolated transcripts encoding RNase 8 via rapid amplification of cDNA ends (RACE) and RT-PCR which included a distal potential translational start site followed by sequence encoding an additional 30 amino acids that are conserved in the genomes of several higher primates. The distal translational start site is functional and promotes RNase 8 synthesis in transfected COS-7 cells. CONCLUSIONS: These results suggest that RNase 8 may diverge considerably from typical RNase A family ribonucleases and may likewise exhibit unique function. This finding prompts a reconsideration of what we have previously termed functional pseudogenes, as RNase 8 may be responding to constraints that promote significant functional divergence from the canonical structure and enzymatic activity characteristic of the RNase A family.


Assuntos
Variação Genética , Ribonucleases/genética , Alelos , Sequência de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , Humanos , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Sítio de Iniciação de Transcrição , Transfecção
11.
J Immunol ; 184(11): 6327-34, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20421642

RESUMO

Platelet-activating factor (PAF [1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine]) is a phospholipid mediator released from activated macrophages, mast cells, and basophils that promotes pathophysiologic inflammation. Eosinophil responses to PAF are complex and incompletely elucidated. We show in this article that PAF and its 2-deacetylated metabolite (lysoPAF) promote degranulation (release of eosinophil peroxidase) via a mechanism that is independent of the characterized PAFR. Specifically, we demonstrate that receptor antagonists CV-3988 and WEB-2086 and pertussis toxin have no impact on PAF- or lysoPAF-mediated degranulation. Furthermore, cultured mouse eosinophils from PAFR(-/-) bone marrow progenitors degranulate in response to PAF and lysoPAF in a manner indistinguishable from their wild-type counterparts. In addition to PAF and lysoPAF, human eosinophils degranulate in response to lysophosphatidylcholine, but not phosphatidylcholine, lysophosphatidylethanolamine, or phosphatidylethanolamine, demonstrating selective responses to phospholipids with a choline head-group and minimal substitution at the sn-2 hydroxyl. Human eosinophils release preformed cytokines in response to PAF, but not lysoPAF, also via a PAFR-independent mechanism. Mouse eosinophils do not release cytokines in response to PAF or lysoPAF, but they are capable of doing so in response to IL-6. Overall, our work provides the first direct evidence for a role for PAF in activating and inducing degranulation of mouse eosinophils, a crucial feature for the interpretation of mouse models of PAF-mediated asthma and anaphylaxis. Likewise, we document and define PAF and lysoPAF-mediated activities that are not dependent on signaling via PAFR, suggesting the existence of other unexplored molecular signaling pathways mediating responses from PAF, lysoPAF, and closely related phospholipid mediators.


Assuntos
Degranulação Celular/imunologia , Eosinófilos/imunologia , Fator de Ativação de Plaquetas/imunologia , Glicoproteínas da Membrana de Plaquetas/imunologia , Receptores Acoplados a Proteínas G/imunologia , Animais , Azepinas/farmacologia , Degranulação Celular/efeitos dos fármacos , Eosinófilos/efeitos dos fármacos , Eosinófilos/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Éteres Fosfolipídicos/farmacologia , Fator de Ativação de Plaquetas/metabolismo , Inibidores da Agregação Plaquetária/farmacologia , Glicoproteínas da Membrana de Plaquetas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Triazóis/farmacologia
12.
Blood ; 114(13): 2649-56, 2009 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-19652202

RESUMO

Eosinophils are recruited to the lung in response to infection with pneumovirus pathogens and have been associated with both the pathophysiologic sequelae of infection and, more recently, with accelerated virus clearance. Here, we demonstrate that the pneumovirus pathogens, respiratory syncytial virus (RSV) and pneumonia virus of mice (PVM), can infect human and mouse eosinophils, respectively, and that virus infection of eosinophils elicits the release of disease-related proinflammatory mediators from eosinophils. RSV replication in human eosinophils results in the release of infectious virions and in the release of the proinflammatory mediator, interleukin-6 (IL-6). PVM replication in cultured bone marrow eosinophils (bmEos) likewise results in release of infectious virions and the proinflammatory mediators IL-6, IP-10, CCL2, and CCL3. In contrast to the findings reported in lung tissue of RSV-challenged mice, PVM replication is accelerated in MyD88 gene-deleted bmEos, whereas release of cytokines is diminished. Interestingly, exogenous IL-6 suppresses virus replication in MyD88 gene-deleted bmEos, suggesting a role for a MyD88-dependent cytokine-mediated feedback circuit in modulating this response. Taken together, our findings suggest that eosinophils are targets of virus infection and may have varied and complex contributions to the pathogenesis and resolution of pneumovirus disease.


Assuntos
Quimiocinas/metabolismo , Eosinófilos/metabolismo , Interleucina-6/metabolismo , Fator 88 de Diferenciação Mieloide/fisiologia , Infecções por Pneumovirus/imunologia , Pneumovirus/fisiologia , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Células da Medula Óssea/virologia , Fatores Quimiotáticos/metabolismo , Eosinófilos/efeitos dos fármacos , Eosinófilos/imunologia , Eosinófilos/virologia , Interleucina-6/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Infecções por Pneumovirus/genética , Infecções por Pneumovirus/metabolismo , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética , Replicação Viral/fisiologia , Eliminação de Partículas Virais/efeitos dos fármacos , Eliminação de Partículas Virais/genética , Eliminação de Partículas Virais/fisiologia
13.
J Immunol ; 183(1): 604-12, 2009 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19542471

RESUMO

Enhanced disease is the term used to describe the aberrant Th2-skewed responses to naturally acquired human respiratory syncytial virus (hRSV) infection observed in individuals vaccinated with formalin-inactivated viral Ags. Here we explore this paradigm with pneumonia virus of mice (PVM), a pathogen that faithfully reproduces features of severe hRSV infection in a rodent host. We demonstrate that PVM infection in mice vaccinated with formalin-inactivated Ags from PVM-infected cells (PVM Ags) yields Th2-skewed hypersensitivity, analogous to that observed in response to hRSV. Specifically, we detect elevated levels of IL-4, IL-5, IL-13, and eosinophils in bronchoalveolar lavage fluid of PVM-infected mice that were vaccinated with PVM Ags, but not among mice vaccinated with formalin-inactivated Ags from uninfected cells (control Ags). Interestingly, infection in PVM Ag-vaccinated mice was associated with a approximately 10-fold reduction in lung virus titer and protection against weight loss when compared with infected mice vaccinated with control Ags, despite the absence of serum-neutralizing Abs. Given recent findings documenting a role for eosinophils in promoting clearance of hRSV in vivo, we explored the role of eosinophils in altering the pathogenesis of disease with eosinophil-deficient mice. We found that eosinophil deficiency had no impact on virus titer in PVM Ag-vaccinated mice, nor on weight loss or levels of CCL11 (eotaxin-1), IFN-gamma, IL-5, or IL-13 in bronchoalveolar lavage fluid. However, levels of both IL-4 and CCL3 (macrophage inflammatory protein-1alpha) in bronchoalveolar lavage fluid were markedly diminished in PVM Ag-vaccinated, PVM-infected eosinophil-deficient mice when compared with wild-type controls.


Assuntos
Eosinófilos/imunologia , Eosinófilos/patologia , Formaldeído , Pulmão/imunologia , Pulmão/patologia , Vírus da Pneumonia Murina/imunologia , Infecções por Pneumovirus/prevenção & controle , Vacinas Virais/imunologia , Animais , Antígenos Virais/administração & dosagem , Antígenos Virais/imunologia , Linhagem Celular , Eosinófilos/virologia , Fixadores , Hipersensibilidade/imunologia , Hipersensibilidade/patologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Vírus da Pneumonia Murina/crescimento & desenvolvimento , Infecções por Pneumovirus/imunologia , Infecções por Pneumovirus/patologia , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/efeitos adversos , Vacinas de Produtos Inativados/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/efeitos adversos
14.
Methods Mol Biol ; 2241: 37-47, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33486726

RESUMO

Human eosinophilic leukocytes are found in peripheral blood and tissues at homeostasis and at elevated levels in atopic disorders. As inbred strains of mice (Mus musculus) are currently the models of choice for the study of disease mechanisms in vivo, a full understanding of mouse eosinophils is critical for interpretation of experimental findings. Toward this end, several years ago we presented a protocol for generating mouse eosinophils in tissue culture from unselected bone marrow progenitors (Dyer et al., J Immunol 181: 4004-4009, 2008). This method has been implemented widely and has proven to be effective for generating phenotypically normal eosinophils from numerous mouse strains and genotypes. Here we provide a detailed version of this protocol, along with suggestions and notes for its careful execution. We have also included several protocol variations and suggestions for improvements.


Assuntos
Técnicas de Cultura de Células/métodos , Eosinófilos/citologia , Células-Tronco Mesenquimais/citologia , Animais , Medula Óssea/metabolismo , Células da Medula Óssea/citologia , Diferenciação Celular , Eosinófilos/metabolismo , Eosinófilos/fisiologia , Interleucina-5/metabolismo , Contagem de Leucócitos , Camundongos , Células-Tronco
15.
Methods Mol Biol ; 2241: 49-58, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33486727

RESUMO

Flow cytometry is a critical tool that can be employed to detect unique cells and to isolate cells from tissues based on their antigen profiles. While mouse eosinophils can be readily detected by one or more distinct antigen profiles, many of these strategies do not result in accurate eosinophil counts. We present here our basic protocol, which permits quantitative detection of eosinophils and isolation of eosinophils from bone marrow, spleen, and lung tissue of allergen-challenged wild-type and unchallenged IL5 transgenic mice. With small protocol variations, eosinophils can be isolated from small intestines and muscle tissue, the latter from infiltrates characteristic of muscular dystrophy (mdx) mice.


Assuntos
Separação Celular/métodos , Eosinófilos/citologia , Citometria de Fluxo/métodos , Alérgenos/imunologia , Animais , Sangue/metabolismo , Células Sanguíneas/citologia , Medula Óssea/imunologia , Células da Medula Óssea/citologia , Eosinófilos/metabolismo , Eosinófilos/fisiologia , Feminino , Separação Imunomagnética/métodos , Contagem de Leucócitos/métodos , Pulmão/citologia , Pulmão/imunologia , Masculino , Camundongos , Camundongos Endogâmicos mdx , Camundongos Transgênicos , Receptores de IgG/imunologia , Baço/citologia , Baço/imunologia
16.
PLoS One ; 16(8): e0255997, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34383839

RESUMO

Despite an ongoing focus on the role of diet in health and disease, we have only a limited understanding of these concepts at the cellular and molecular levels. While obesity has been clearly recognized as contributing to metabolic syndrome and the pathogenesis of adult asthma, recent evidence has linked high sugar intake alone to an increased risk of developing asthma in childhood. In this study, we examined the impact of diet in a mouse model of allergic airways inflammation with a specific focus on eosinophils. As anticipated, male C57BL/6 mice gained weight on a high-calorie, high-fat diet. However, mice also gained weight on an isocaloric high-sucrose diet. Elevated levels of leptin were detected in the serum and airways of mice maintained on the high-fat, but not the high-sucrose diets. We found that diet alone had no impact on eosinophil numbers in the airways at baseline or their recruitment in response to allergen (Alternaria alternata) challenge in either wild-type or leptin-deficient ob/ob mice. However, both bronchoalveolar lavage fluid and eosinophils isolated from lung tissue of allergen-challenged mice exhibited profound diet-dependent differences in cytokine content. Similarly, while all wild-type mice responded to allergen challenge with significant increases in methacholine-dependent total airway resistance (Rrs), airway resistance in mice maintained on the isocaloric high-sucrose (but not the high-calorie/high-fat) diet significantly exceeded that of mice maintained on the basic diet. In summary, our findings revealed that mice maintained on an isocaloric high-sucrose diet responded to allergen challenge with significant changes in both BAL and eosinophil cytokine content together with significant increases in Rrs. These results provide a model for further exploration of the unique risks associated with a high-sugar diet and its impact on allergen-associated respiratory dysfunction.


Assuntos
Alérgenos/toxicidade , Asma/patologia , Citocinas/metabolismo , Dieta Hiperlipídica/efeitos adversos , Eosinófilos/imunologia , Pneumonia/complicações , Sacarose/toxicidade , Animais , Asma/etiologia , Asma/metabolismo , Líquido da Lavagem Broncoalveolar/química , Eosinófilos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ovalbumina/toxicidade , Edulcorantes/toxicidade
17.
Viruses ; 13(5)2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33922096

RESUMO

Respiratory virus infections can have long-term effects on lung function that persist even after the acute responses have resolved. Numerous studies have linked severe early childhood infection with respiratory syncytial virus (RSV) to the development of wheezing and asthma, although the underlying mechanisms connecting these observations remain unclear. Here, we examine airway hyperresponsiveness (AHR) that develops in wild-type mice after recovery from symptomatic but sublethal infection with the natural rodent pathogen, pneumonia virus of mice (PVM). We found that BALB/c mice respond to a limited inoculum of PVM with significant but reversible weight loss accompanied by virus replication, acute inflammation, and neutrophil recruitment to the airways. At day 21 post-inoculation, virus was no longer detected in the airways and the acute inflammatory response had largely resolved. However, and in contrast to most earlier studies using the PVM infection model, all mice survived the initial infection and all went on to develop serum anti-PVM IgG antibodies. Furthermore, using both invasive plethysmography and precision-cut lung slices, we found that these mice exhibited significant airway hyperresponsiveness at day 21 post-inoculation that persisted through day 45. Taken together, our findings extend an important and versatile respiratory virus infection model that can now be used to explore the role of virions and virion clearance as well as virus-induced inflammatory mediators and their signaling pathways in the development and persistence of post-viral AHR and lung dysfunction.


Assuntos
Vírus da Pneumonia Murina/imunologia , Infecções por Pneumovirus/complicações , Infecções por Pneumovirus/veterinária , Hipersensibilidade Respiratória/etiologia , Animais , Anticorpos Antivirais/imunologia , Humanos , Pulmão/imunologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Vírus da Pneumonia Murina/fisiologia , Infecções por Pneumovirus/imunologia , Infecções por Pneumovirus/virologia , Hipersensibilidade Respiratória/imunologia , Hipersensibilidade Respiratória/virologia , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/imunologia , Vírus Sincicial Respiratório Humano/fisiologia
18.
Pathogens ; 10(12)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34959580

RESUMO

Acute respiratory virus infections can have profound and long-term effects on lung function that persist even after the acute responses have fully resolved. In this study, we examined gene expression by RNA sequencing in the lung tissue of wild-type BALB/c mice that were recovering from a sublethal infection with the pneumonia virus of mice (PVM), a natural rodent pathogen of the same virus family and genus as the human respiratory syncytial virus. We compared these responses to gene expression in PVM-infected mice treated with Lactobacillus plantarum, an immunobiotic agent that limits inflammation and averts the negative clinical sequelae typically observed in response to acute infection with this pathogen. Our findings revealed prominent differential expression of inflammation-associated genes as well as numerous genes and gene families implicated in mitosis and cell-cycle regulation, including cyclins, cyclin-dependent kinases, cell division cycle genes, E2F transcription factors, kinesins, centromere proteins, and aurora kinases, among others. Of particular note was the differential expression of the cell division cycle gene Cdc20b, which was previously identified as critical for the ex vivo differentiation of multi-ciliated cells. Collectively, these findings provided us with substantial insight into post-viral repair processes and broadened our understanding of the mechanisms underlying Lactobacillus-mediated protection.

19.
J Leukoc Biol ; 110(4): 679-691, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33404075

RESUMO

No longer regarded simply as end-stage cytotoxic effectors, eosinophils are now recognized as complex cells with unique phenotypes that develop in response stimuli in the local microenvironment. In our previous study, we documented eosinophil infiltration in damaged muscle characteristic of dystrophin-deficient (mdx) mice that model Duchenne muscular dystrophy. Specifically, we found that eosinophils did not promote the generation of muscle lesions, as these persisted in eosinophil-deficient mdx.PHIL mice. To obtain additional insight into these findings, we performed RNA sequencing of eosinophils isolated from muscle tissue of mdx, IL5tg, and mdx.IL5tg mice. We observed profound up-regulation of classical effector proteins (major basic protein-1, eosinophil peroxidase, and eosinophil-associated ribonucleases) in eosinophils isolated from lesion-free muscle from IL5tg mice. By contrast, we observed significant up-regulation of tissue remodeling genes, including proteases, extracellular matrix components, collagen, and skeletal muscle precursors, as well as the immunomodulatory receptor, Trem2, in eosinophils isolated from skeletal muscle tissue from the dystrophin-deficient mdx mice. Although the anti-inflammatory properties of Trem2 have been described in the monocyte/macrophage lineage, no previous studies have documented its expression in eosinophils. We found that Trem2 was critical for full growth and differentiation of bone marrow-derived eosinophil cultures and full expression of TLR4. Immunoreactive Trem2 was also detected on human peripheral blood eosinophils at levels that correlated with donor body mass index and total leukocyte count. Taken together, our findings provide important insight into the immunomodulatory and remodeling capacity of mouse eosinophils and the flexibility of their gene expression profiles in vivo.


Assuntos
Eosinófilos/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/metabolismo , Animais , Sangue/metabolismo , Contagem de Células , Deleção de Genes , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Camundongos Knockout , Músculo Esquelético/metabolismo , Especificidade de Órgãos , Receptor 4 Toll-Like/metabolismo
20.
Exp Dermatol ; 19(5): 467-9, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-19758339

RESUMO

BACKGROUND/PURPOSE: In a recent issue of Experimental Dermatology (18, 2009, 654), Schefzyk et al. concluded that multi-antibody eosinophil isolation (Miltenyi) should be abandoned, as differential purity was minimal, and eosinophils underwent accelerated apoptosis when compared with those isolated with traditional anti-CD16 microbeads. Our intent was to investigate the universality of these findings. METHODS: We isolated eosinophils from normal donor granulocyte packs using two methods, and evaluated purity, viability and annexin-V/propidium-iodide staining. RESULTS: Purity was substantially greater when multi-antibody isolation was used for eosinophil isolation from granulocyte packs (98% vs 69%). No differential survival was detected when eosinophils were maintained in culture with or without interleukin-5. CONCLUSIONS: Multi-antibody eosinophil isolation represents a substantial advantage over anti-CD-16 microbeads when isolating large numbers of eosinophils from concentrated leucocyte preparations. No differential survival was observed. While appropriate consideration of methods is always crucial, multi-antibody eosinophil isolation should not be abandoned completely.


Assuntos
Eosinófilos/citologia , Interleucina-5/farmacologia , Microesferas , Anticorpos/química , Anticorpos/imunologia , Antígenos CD/imunologia , Apoptose/efeitos dos fármacos , Biotinilação , Contagem de Células , Separação Celular/métodos , Sobrevivência Celular/efeitos dos fármacos , Eosinófilos/efeitos dos fármacos , Humanos , Monócitos/citologia , Neutrófilos/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA