Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Philos Trans A Math Phys Eng Sci ; 380(2217): 20210149, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-34974718

RESUMO

The interdependence between structural mechanics and microstructure solidification has been widely observed experimentally as a factor leading to undesirable macroscopic properties and casting defects. Despite this, numerical modelling of microstructure solidification often neglects this interaction and is therefore unable to predict key mechanisms such as the development of misoriented grains. This paper presents a numerical method coupling a finite volume structural mechanics solver to a cellular automata solidification solver, where gravity or pressure-driven displacements alter the local orientation and thereby growth behaviour of the solidifying dendrites. Solutions obtained using this model are presented which show fundamental behaviours observed in experiments. The results show that small, localized deformations can lead to significant changes in the crystallographic orientation of a dendrite and ultimately affect the overall microstructure development. This article is part of the theme issue 'Transport phenomena in complex systems (part 2)'.

2.
Philos Trans A Math Phys Eng Sci ; 378(2171): 20190249, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32279626

RESUMO

Large thermal gradients in the melt pool from rapid heating followed by rapid cooling in metal additive manufacturing generate large thermoelectric currents. Applying an external magnetic field to the process introduces fluid flow through thermoelectric magnetohydrodynamics. Convective transport of heat and mass can then modify the melt pool dynamics and alter microstructural evolution. As a novel technique, this shows great promise in controlling the process to improve quality and mitigate defect formation. However, there is very little knowledge within the scientific community on the fundamental principles of this physical phenomenon to support practical implementation. To address this multi-physics problem that couples the key phenomena of melting/solidification, electromagnetism, hydrodynamics, heat and mass transport, the lattice Boltzmann method for fluid dynamics was combined with a purpose-built code addressing solidification modelling and electromagnetics. The theoretical study presented here investigates the hydrodynamic mechanisms introduced by the magnetic field. The resulting steady-state solutions of modified melt pool shapes and thermal fields are then used to predict the microstructure evolution using a cellular automata-based grain growth model. The results clearly demonstrate that the hydrodynamic mechanisms and, therefore, microstructure characteristics are strongly dependent on magnetic field orientation. This article is part of the theme issue 'Patterns in soft and biological matters'.

3.
Philos Trans A Math Phys Eng Sci ; 377(2143): 20180206, 2019 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-30827220

RESUMO

The fundamental mechanisms governing macroscopic freckle defect formation during directional solidification are studied experimentally in a Hele-Shaw cell for a low-melting point Ga-25 wt.% In alloy and modelled numerically in three dimensions using a microscopic parallelized Cellular Automata Lattice Boltzmann Method. The size and distribution of freckles (long solute channels, or chimneys) are shown to be strongly dependent on the thermal profile of the casting, with flat, concave and convex isotherms being considered. For the flat isotherm case, no large-scale freckles form, while for concave or convex isotherms, large freckles appear but in different locations. The freckle formation mechanism is as expected buoyancy-driven, but the chimney stability, its long-term endurance and its location are shown to depend critically on the detailed convective transport through the inter-dendritic region. Flow is generated by curved isopleths of solute concentration. As solute density is different from that of the bulk fluid, gravity causes 'uphill' or 'downhill' lateral flow from the sample centre to the edges through the mush, feeding the freckle. An excellent agreement is obtained between the numerical model and real-time X-ray observations of a solidifying sample under strictly controlled temperature conditions. This article is part of the theme issue 'Heterogeneous materials: metastable and non-ergodic internal structures'.

4.
Philos Trans A Math Phys Eng Sci ; 376(2113)2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29311205

RESUMO

In the undercooled solidification of pure metals, the dendrite tip velocity has been shown experimentally to have a strong dependence on the intensity of an external magnetic field, exhibiting several maxima and minima. In the experiments conducted in China, the undercooled solidification dynamics of pure Ni was studied using the glass fluxing method. Visual recordings of the progress of solidification are compared at different static fields up to 6 T. The introduction of microscopic convective transport through thermoelectric magnetohydrodynamics is a promising explanation for the observed changes of tip velocities. To address this problem, a purpose-built numerical code was used to solve the coupled equations representing the magnetohydrodynamic, thermal and solidification mechanisms. The underlying phenomena can be attributed to two competing flow fields, which were generated by orthogonal components of the magnetic field, parallel and transverse to the direction of growth. Their effects are either intensified or damped out with increasing magnetic field intensity, leading to the observed behaviour of the tip velocity. The results obtained reflect well the experimental findings.This article is part of the theme issue 'From atomistic interfaces to dendritic patterns'.

5.
Ultrason Sonochem ; 63: 104959, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31958707

RESUMO

Contactless ultrasound is a novel, easily implemented, technique for the Ultrasonic Treatment (UST) of liquid metals. Instead of using a vibrating sonotrode probe inside the melt, which leads to contamination, we consider a high AC frequency electromagnetic coil placed close to the metal free surface. The coil induces a rapidly changing Lorentz force, which in turn excites sound waves. To reach the necessary pressure amplitude for cavitation with the minimum electrical energy use, it was found necessary to achieve acoustic resonance in the liquid volume, by finely tuning the coil AC supply frequency. The appearance of cavitation was then detected experimentally with an externally placed ultrasonic microphone and confirmed by the reduction in grain size of the solidified metal. To predict the appearance of various resonant modes numerically, the exact dimensions of the melt volume, the holding crucible, surrounding structures and their sound properties are required. As cavitation progresses the speed of sound in the melt changes, which in practice means resonance becomes intermittent. Given the complexity of the situation, two competing numerical models are used to compute the soundfield. A high order time-domain method focusing on a particular forcing frequency and a Helmholtz frequency domain method scanning the full frequency range of the power supply. A good agreement is achieved between the two methods and experiments which means the optimal setup for the process can be predicted with some accuracy.

6.
Ultrason Sonochem ; 52: 455-467, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30594518

RESUMO

Ultrasonic (cavitation) melt processing attracts considerable interest from both academic and industrial communities as a promising route to provide clean, environment friendly and energy efficient solutions for some of the core issues of the metal casting industry, such as improving melt quality and providing structure refinement. In the last 5 years, the authors undertook an extensive research programme into fundamental mechanisms of cavitation melt processing using state-of-the-art and unique facilities and methodologies. This overview summarises the recent results on the evaluation of acoustic pressure and melt flows in the treated melt, direct observations and quantitative analysis of cavitation in liquid aluminium alloys, in-situ and ex-situ studies of the nucleation, growth and fragmentation of intermetallics, and de-agglomeration of particles. These results provide valuable new insights and knowledge that are essential for upscaling ultrasonic melt processing to industrial level.

7.
Ultrason Sonochem ; 34: 651-662, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27773292

RESUMO

A bespoke cavitometer that measures acoustic spectrum and is capable of operating in a range of temperatures (up to 750°C) was used to study the cavitation behaviour in three transparent liquids and in molten aluminium. To relate these acoustic measurements to cavitation development, the dynamics of the cavitation bubble structures was observed in three Newtonian, optically transparent liquids with significantly different physical properties: water, ethanol, and glycerine. Each liquid was treated at 20kHz with a piezoelectric ultrasonic transducer coupled to a titanium sonotrode with a tip diameter of 40mm. Two different transducer power levels were deployed: 50% and 100%, with the maximum power corresponding to a peak-to-peak amplitude of 17µm. The cavitation structures and the flow patterns were filmed with a digital camera. To investigate the effect of distance from the ultrasound source on the cavitation intensity, acoustic emissions were measured with the cavitometer at two points: below the sonotrode and near the edge of the experimental vessel. The behaviour of the three tested liquids was very different, implying that their physical parameters played a decisive role in the establishment of the cavitation regime. Non dimensional analysis revealed that water shares the closest cavitation behaviour with liquid aluminium and can therefore be used as its physical analogue in cavitation studies; this similarity was also confirmed when comparing the measured acoustic spectra of water and liquid aluminium.

8.
Ultrason Sonochem ; 37: 660-668, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28427680

RESUMO

To address difficulties in treating large volumes of liquid metal with ultrasound, a fundamental study of acoustic cavitation in liquid aluminium, expressed in an experimentally validated numerical model, is presented in this paper. To improve the understanding of the cavitation process, a non-linear acoustic model is validated against reference water pressure measurements from acoustic waves produced by an immersed horn. A high-order method is used to discretize the wave equation in both space and time. These discretized equations are coupled to the Rayleigh-Plesset equation using two different time scales to couple the bubble and flow scales, resulting in a stable, fast, and reasonably accurate method for the prediction of acoustic pressures in cavitating liquids. This method is then applied to the context of treatment of liquid aluminium, where it predicts that the most intense cavitation activity is localised below the vibrating horn and estimates the acoustic decay below the sonotrode with reasonable qualitative agreement with experimental data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA