Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000122

RESUMO

Among the various drug discovery methods, a very promising modern approach consists in designing multi-target-directed ligands (MTDLs) able to modulate multiple targets of interest, including the pathways where hydrogen sulfide (H2S) is involved. By incorporating an H2S donor moiety into a native drug, researchers have been able to simultaneously target multiple therapeutic pathways, resulting in improved treatment outcomes. This review gives the reader some pills of successful multi-target H2S-donating molecules as worthwhile tools to combat the multifactorial nature of complex disorders, such as inflammatory-based diseases and cancer, as well as cardiovascular, metabolic, and neurodegenerative disorders.


Assuntos
Sulfeto de Hidrogênio , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/farmacologia , Humanos , Animais , Ligantes , Descoberta de Drogas/métodos , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/metabolismo
2.
Molecules ; 29(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38611877

RESUMO

4-Nitro and 7-nitro propranolol have been recently synthesized and characterized by us. (±)-4-NO2-propranolol has been shown to act as a selective antagonist of 6-nitrodopamine (6-ND) receptors in the right atrium of rats. As part of our follow-up to this study, herein, we describe the first synthesis of (±)-3-nitroatenolol as a probe to evaluate the potential nitration of atenolol by endothelium. Chiral chromatography was used to produce pure enantiomers. By using Riguera's method, which is based on the sign distribution of ΔδH, the absolute configuration of the secondary alcohol was determined.

3.
Molecules ; 29(18)2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39339509

RESUMO

In this study, a new and straightforward process for the preparation of budesonide 21-phosphate (Bud-21P) and its disodium salt (Bud-21P-Na2) is described. The method results in a yield comparable to those obtained by diphosphoryl chloride, but it is more manageable, less expensive, and safer. The new compounds are characterized by better water solubility compared to the parent compound. Moreover, they have been evaluated for their anti-inflammatory activity and the obtained results clearly evidence that Bud-21P and Bud-21P-Na2 retained anti-inflammatory activity like the parent compound budesonide (Bud) in mice with cutaneous induced edema.


Assuntos
Anti-Inflamatórios , Budesonida , Modelos Animais de Doenças , Inflamação , Animais , Camundongos , Budesonida/farmacologia , Budesonida/síntese química , Budesonida/uso terapêutico , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Inflamação/tratamento farmacológico , Inflamação/induzido quimicamente , Edema/tratamento farmacológico , Edema/induzido quimicamente , Solubilidade
4.
Int J Mol Sci ; 23(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36430281

RESUMO

Glaucoma is a group of eye diseases consisting of optic nerve damage with corresponding loss of field vision and blindness. Hydrogen sulfide (H2S) is a gaseous neurotransmitter implicated in various pathophysiological processes. It is involved in the pathological mechanism of glaucomatous neuropathy and exerts promising effects in the treatment of this disease. In this work, we designed and synthetized new molecular hybrids between antiglaucoma drugs and H2S donors to combine the pharmacological effect of both moieties, providing a heightened therapy. Brinzolamide, betaxolol and brimonidine were linked to different H2S donors. The H2S-releasing properties of the new compounds were evaluated in a phosphate buffer solution by the amperometric approach, and evaluated in human primary corneal epithelial cells (HCEs) by spectrofluorometric measurements. Experimental data showed that compounds 1c, 1d and 3d were the hybrids with the best properties, characterized by a significant and long-lasting production of the gasotransmitter both in the aqueous solution (in the presence of L-cysteine) and in the intracellular environment. Because, to date, the donation of H2S by antiglaucoma H2S donor hybrids using non-immortalized corneal cells has never been reported, these results pave the way to further investigation of the potential efficacy of the newly synthesized compounds.


Assuntos
Gasotransmissores , Glaucoma , Sulfeto de Hidrogênio , Humanos , Agentes Antiglaucoma , Betaxolol/farmacologia , Betaxolol/uso terapêutico , Gasotransmissores/uso terapêutico , Glaucoma/tratamento farmacológico , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/uso terapêutico
5.
Molecules ; 28(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36615252

RESUMO

We recently identified 6-nitrodopamine and other nitro-catecholamines (6-nitrodopa, 6-nitroadrenaline), indicating that the endothelium has the ability to nitrate the classical catecholamines (dopamine, noradrenaline, and adrenaline). In order to investigate whether drugs could be subject to the same nitration process, we synthesized 4-nitro- and 7-nitropropranolol as probes to evaluate the possible nitration of the propranolol by the endothelium. The separation of the enantiomers in very high yields and excellent enantiopurity was achieved by chiral HPLC. Finally, we used Riguera's method to determine the absolute configuration of the enantiomers, through double derivatization with MPA and NMR studies.


Assuntos
Catecolaminas , Propranolol , Espectroscopia de Ressonância Magnética , Estereoisomerismo , Cromatografia Líquida de Alta Pressão/métodos
6.
Molecules ; 27(19)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36235029

RESUMO

A new series of 5-norbornene-2-carboxamide derivatives was prepared and their affinities to the 5-HT1A, 5-HT2A, and 5-HT2C receptors were evaluated and compared to a previously synthesized series of derivatives characterized by exo-N-hydroxy-5-norbornene-2,3-dicarboximidenucleus, in order to identify selective ligands for the above-mentioned subtype receptors. Arylpiperazines represents one of the most important classes of 5-HT1AR ligands, and recent research concerning new derivatives has been focused on the modification of one or more portions of such pharmacophore. The combination of structural elements (heterocyclic nucleus, propyl chain and 4-substituted piperazine), known to be critical to the affinity to 5-HT1A receptors, and the proper selection of substituents led to compounds with high specificity and affinity towards serotoninergic receptors. The most active compounds were selected for further in vivo assays to determine their functional activity. Finally, to rationalize the obtained results, molecular docking studies were performed. The results of the pharmacological studies showed that Norbo-4 and Norbo-18 were the most active and promising derivatives for the serotonin receptor considered in this study.


Assuntos
Receptores de Serotonina , Serotonina , Ligantes , Simulação de Acoplamento Molecular , Norbornanos/farmacologia , Piperazina , Receptor 5-HT1A de Serotonina , Relação Estrutura-Atividade
7.
Arch Pharm (Weinheim) ; 354(5): e2000414, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33543794

RESUMO

A new series of norbornene and exo-N-hydroxy-7-oxabicyclo[2.2.1]hept-5-ene-2,3-dicarboximide derivatives was prepared, and their affinities to the 5-HT1A , 5-HT2A , and 5-HT2C receptors were evaluated and compared with a previously synthesized series of derivatives characterized by the same nuclei, to identify selective ligands for the subtype receptors. Arylpiperazines represent one of the most important classes of 5-HT1A R ligands, and the research of new derivatives has been focused on the modification of one or more portions of this pharmacophore. The combination of structural elements (heterocyclic nucleus, hydroxyalkyl chain, and 4-substituted piperazine), known to be critical for the affinity to 5-HT1A receptors, and the proper selection of substituents resulted in compounds with high specificity and affinity toward serotoninergic receptors. The most active compounds were selected for further in vivo assays to determine their functional activity. Finally, to rationalize the obtained results, molecular docking studies were performed. The results of the pharmacological studies showed that 3e, 4j, and 4n were the most active and promising derivatives for the serotonin receptor considered in this study.


Assuntos
Simulação de Acoplamento Molecular , Piperazina/farmacologia , Receptores de Serotonina/metabolismo , Animais , Relação Dose-Resposta a Droga , Ligantes , Masculino , Estrutura Molecular , Piperazina/síntese química , Piperazina/química , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
8.
Int J Mol Sci ; 22(16)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34445567

RESUMO

S1P is the final product of sphingolipid metabolism, which interacts with five widely expressed GPCRs (S1P1-5). Increasing numbers of studies have indicated the importance of S1P3 in various pathophysiological processes. Recently, we have identified a pepducin (compound KRX-725-II) acting as an S1P3 receptor antagonist. Here, aiming to optimize the activity and selectivity profile of the described compound, we have synthesized a series of derivatives in which Tyr, in position 4, has been substituted with several natural aromatic and unnatural aromatic and non-aromatic amino acids. All the compounds were evaluated for their ability to inhibit vascular relaxation induced by KRX-725 (as S1P3 selective pepducin agonist) and KRX-722 (an S1P1-selective pepducin agonist). Those selective towards S1P3 (compounds V and VII) were also evaluated for their ability to inhibit skeletal muscle fibrosis. Finally, molecular dynamics simulations were performed to derive information on the preferred conformations of selective and unselective antagonists.


Assuntos
Peptídeos Penetradores de Células/farmacologia , Fibrose/tratamento farmacológico , Músculo Esquelético/efeitos dos fármacos , Doenças Musculares/tratamento farmacológico , Mioblastos/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Receptores de Esfingosina-1-Fosfato/antagonistas & inibidores , Animais , Fibrose/metabolismo , Fibrose/patologia , Masculino , Camundongos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Doenças Musculares/metabolismo , Doenças Musculares/patologia , Mioblastos/metabolismo , Mioblastos/patologia , Receptores de Lisoesfingolipídeo
9.
Arch Pharm (Weinheim) ; 352(5): e1800373, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31025433

RESUMO

N'-Cyanoisonicotinamidine and N'-cyanopicolinamidine derivatives, linked to an arylpiperazine moiety, were prepared and their affinities to the 5-HT1A , 5-HT2A , and 5-HT2C receptors were evaluated. Several of the newly synthesized compounds, tested by binding studies, showed nanomolar affinity at the 5-HT1A and 5-HT2C receptors and moderate or no affinity for other relevant receptors (D1 , D2 , α1 , and α2 ). Compound 8e (Ki = 21.4 nM) was the most affine for the 5-HT2C receptor, showing, at the same time, a high selectivity with respect to the other receptors analyzed. Compounds 4a and 4c, instead, showed an interesting mixed 5-HT1A /5-HT2C activity with Ki values of 21.3/11.5 and 23.2/6.48 nM, respectively. The compounds with better affinity and selectivity binding profiles toward 5-HT2C (4a, 4c, 8b, and 8e) were selected for further in vivo assays to determine their functional activity. Finally, to rationalize the obtained results, molecular docking studies were performed. The results of the pharmacological studies showed that compounds 4a, 8b, and 8e exerted antidepressant-like effects and 4a and 8e revealed also significant anxiolytic properties. Among the developed derivatives, the most promising compound seems to be 4a, which displayed antipsychotic-, antidepressant- and anxiolytic-like properties. No side effects, like catalepsy, motor-impairment or ethanol-potentiating effects, were observed after the injection of the tested compounds.


Assuntos
Amidinas/metabolismo , Antipsicóticos/farmacologia , Simulação de Acoplamento Molecular , Receptor 5-HT2C de Serotonina/metabolismo , Amidinas/síntese química , Amidinas/química , Amidinas/farmacologia , Antipsicóticos/síntese química , Antipsicóticos/química , Relação Dose-Resposta a Droga , Humanos , Ligantes , Estrutura Molecular , Relação Estrutura-Atividade
10.
Bioconjug Chem ; 29(7): 2195-2207, 2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-29791798

RESUMO

The HIV-1 nucleocapsid (NC) protein represents an excellent molecular target for the development of anti-retrovirals by virtue of its well-characterized chaperone activities, which play pivotal roles in essential steps of the viral life cycle. Our ongoing search for candidates able to impair NC binding/annealing activities led to the identification of peptidyl-anthraquinones as a promising class of nucleic acid ligands. Seeking to elucidate the inhibition determinants and increase the potency of this class of compounds, we have now explored the effects of chirality in the linker connecting the planar nucleus to the basic side chains. We show here that the non-natural linker configuration imparted unexpected TAR RNA targeting properties to the 2,6-peptidyl-anthraquinones and significantly enhanced their potency. Even if the new compounds were able to interact directly with the NC protein, they manifested a consistently higher affinity for the TAR RNA substrate and their TAR-binding properties mirrored their ability to interfere with NC-TAR interactions. Based on these findings, we propose that the viral Tat protein, sharing the same RNA substrate but acting in distinct phases of the viral life cycle, constitutes an additional druggable target for this class of peptidyl-anthraquinones. The inhibition of Tat-TAR interaction for the test compounds correlated again with their TAR-binding properties, while simultaneously failing to demonstrate any direct Tat-binding capabilities. These considerations highlighted the importance of TAR RNA in the elucidation of their inhibition mechanism, rather than direct protein inhibition. We have therefore identified anti-TAR compounds with dual in vitro inhibitory activity on different viral proteins, demonstrating that it is possible to develop multitarget compounds capable of interfering with processes mediated by the interactions of this essential RNA domain of HIV-1 genome with NC and Tat proteins.


Assuntos
Antraquinonas/química , Antraquinonas/metabolismo , Antraquinonas/farmacologia , Dipeptídeos , Produtos do Gene tat/metabolismo , Repetição Terminal Longa de HIV , HIV-1 , Ligantes , Ácidos Nucleicos/metabolismo , Proteínas do Nucleocapsídeo/metabolismo , Ligação Proteica/efeitos dos fármacos , RNA Viral/metabolismo
11.
Bioorg Med Chem ; 25(20): 5820-5837, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28943244

RESUMO

Picolinamide derivatives, linked to an arylpiperazine moiety, were prepared and their affinity to 5-HT1A, 5-HT2A and 5-HT2C receptors was evaluated. The combination of structural elements (heterocyclic nucleus, alkyl chain and 4-substituted piperazine), known to play critical roles in affinity for serotoninergic receptors, and the proper selection of substituents led to compounds with high specificity and affinity towards serotoninergic receptors. In binding studies, several molecules showed high affinity in nanomolar and subnanomolar range at 5-HT1A, 5-HT2A and 5-HT2C receptors and moderate or no affinity for other relevant receptors (D1, D2, α1 and α2). N-(2-(4-(pyrimidin-2-yl)piperazin-1-yl)ethyl)picolinamide (3o) with Ki=0.046nM, was the most affine and selective derivative for the 5-HT1A receptor compared to other serotoninergic dopaminergic and adrenergic receptors. N-(2-(4-(2-methoxyphenyl)piperazin-1-yl)ethyl)picolinamide (3b), instead, showed a subnanomolar affinity towards 5-HT2A with Ki=0.0224nM, whereas N-(2-(4-(bis(4-fluorophenyl)methyl)piperazin-1-yl)ethyl)picolinamide (3s) presented an attractive 5-HT2C affinity with Ki=0.8nM. Moreover, the compounds having better affinity and selectivity binding profiles towards 5-HT2A were selected and tested on rat ileum, to determine their effect on 5HT induced contractions. Those more selective towards 5-HT1A receptors were studied in vivo on several behavioral tests.


Assuntos
Íleo/efeitos dos fármacos , Picolinas/síntese química , Picolinas/farmacologia , Receptor 5-HT1A de Serotonina/metabolismo , Receptor 5-HT2A de Serotonina/metabolismo , Receptor 5-HT2C de Serotonina/metabolismo , Animais , Sítios de Ligação , Bioensaio , Ligantes , Aprendizagem em Labirinto/efeitos dos fármacos , Estrutura Molecular , Picolinas/química , Ligação Proteica/efeitos dos fármacos , Ratos , Receptor 5-HT1A de Serotonina/química , Receptor 5-HT2A de Serotonina/química , Receptor 5-HT2C de Serotonina/química , Agonistas do Receptor de Serotonina/síntese química , Agonistas do Receptor de Serotonina/farmacologia
12.
Int J Mol Sci ; 18(11)2017 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-29113071

RESUMO

Two series of N-(aryl)-1-(hydroxyalkyl)pyrrolidine-2-carboxamides (2a-2g and 3a-3g) and 1,4-disubstituted 1,2,3-triazoles (5a-5h and 8a-8h) were synthesized. All the compounds, containing a lipophilic tail and a polar headgroup, were evaluated as sphingosine kinase (SphK) inhibitors by assessing their ability to interfere with the acetylcholine (Ach) induced relaxation of aortic rings pre-contracted with phenylephrine. Moreover, their antiproliferative activity was tested on several cell lines expressing both SphK1 and SphK2. Compounds 5h and 8f, identified as the most efficient antiproliferative agents, showed a different selectivity profile, with 8f being selective for SphK1.


Assuntos
Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos/síntese química , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Vasodilatadores/síntese química , Animais , Aorta/efeitos dos fármacos , Linhagem Celular Tumoral , Inibidores Enzimáticos/farmacologia , Humanos , Masculino , Camundongos , Triazóis/química , Vasodilatadores/farmacologia
13.
Biol Chem ; 396(1): 45-52, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25153237

RESUMO

A series of protease activated receptor 2 activating peptide (PAR2-AP) derivatives (1-15) were designed and synthesized. The obtained compounds were tested on a panel of human kallikreins (hKLK1, hKLK2, hKLK5, hKLK6, and hKLK7) and were found completely inactive toward hKLK1, hKLK2, and hKLK7. Aiming to investigate the mode of interaction between the most interesting compounds and the selected hKLKs, docking studies were performed. The described compounds distinguish the different human tissue kallikreins with compounds 1 and 5 as the best hKLK5 and hKLK6 inhibitors, respectively.


Assuntos
Calicreínas/antagonistas & inibidores , Receptor PAR-2/biossíntese , Humanos , Modelos Moleculares , Receptor PAR-2/genética
14.
Arch Pharm (Weinheim) ; 347(10): 698-706, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25113046

RESUMO

This paper reports the synthesis of new norbornene and exo-N-hydroxy-7-oxabicyclo[2.2.1]hept-5-ene-2,3-dicarboximide derivatives and their binding to the 5-HT1A , 5-HT2A , and 5-HT2C receptors, in order to identify selective ligands for these 5-hydroxytryptamine (5-HT, serotonine) receptor subtypes. The combination of structural elements (heterocyclic nucleus, hydroxyalkyl chain, and 4-substituted piperazine) known to be critical for affinity to 5-HT1A receptors and the proper selection of substituents led to compounds with high specificity and affinity toward serotoninergic receptors. The most active compounds were selected and further evaluated for their binding affinities to D1 , D2 dopaminergic and α1 , α2 adrenergic receptors. 4-[3-[4-(2-Furoyl)piperazin-1-yl]propoxy-2-ol]-4-aza-tricyclo[5.2.1.02,6]dec-8-ene-3,5-dione 3e with Ki = 5.04 ± 0.227 nM was the most active and selective derivative for the 5-HT2C receptor with respect to other serotonin receptors, and the most selective derivative versus dopaminergic and adrenergic receptors.


Assuntos
Encéfalo/metabolismo , Desenho de Fármacos , Piperazinas/síntese química , Piperazinas/metabolismo , Receptores de Serotonina/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Ligantes , Masculino , Estrutura Molecular , Piperazinas/farmacologia , Ligação Proteica , Ensaio Radioligante , Ratos Sprague-Dawley , Receptores Adrenérgicos alfa/metabolismo , Receptores Dopaminérgicos/metabolismo , Receptores de Serotonina/efeitos dos fármacos , Relação Estrutura-Atividade
15.
Pharmaceuticals (Basel) ; 17(10)2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39458961

RESUMO

Background: In recent decades, there has been a startling rise in the number of cancer patients worldwide, which has led to an amazing upsurge in the development of novel anticancer treatment candidates. On a positive note, arylpiperazines have garnered attention in cancer research due to their potential as scaffolds for developing anticancer agents. These compounds exhibit a diverse array of biological activities, including cytotoxic effects against cancer cells. Indeed, one of the key advantages of arylpiperazines lies in their ability to interact with various molecular targets implicated in cancer pathogenesis. Aim: Here, we focus on the chemical structures of several arylpiperazine derivatives, highlighting their anti-proliferative activity in different tumor cell lines. The modular structure, diverse biological activities, and potential for combination therapies of arylpiperazine compounds make them valuable candidates for further preclinical and clinical investigations in the fight against cancer. Conclusion: This review, providing a careful analysis of different arylpiperazines and their biological applications, allows researchers to refine the chemical structures to improve potency, selectivity, and pharmacokinetic properties, thus advancing their therapeutic potential in oncology.

16.
ACS Pharmacol Transl Sci ; 7(7): 1996-2005, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39022351

RESUMO

The debilitating neurodegenerative disease known as amyotrophic lateral sclerosis (ALS) is characterized by the progressive loss of motor neurons (MNs) in the brain, spinal cord, and motor cortex. The ALS neuroinflammatory component is being characterized and includes the overexpression of mediators, such as inducible nitric oxide synthase (iNOS) and tumor necrosis factor-α (TNF-α). Currently, there are no effective treatments for ALS. Indeed, riluzole, an N-methyl-D-aspartate (NMDA) glutamate receptor blocker, and edaravone, a reactive oxygen species (ROS) scavenger, are currently the sole two medications approved for ALS treatment. However, their efficacy in extending life expectancy typically amounts to only a few months. In order to improve the medicaments for the treatment of neurodegenerative diseases, preferably ALS, novel substituted 2-methyl-3-indolylacetic derivatives (compounds II-IV) were developed by combining the essential parts of two small molecules, namely, the opioids containing a 4-piperidinyl ring with indomethacin, previously shown to be efficacious in different experimental models of neuroinflammation. The synthesized compounds were evaluated for their potential capability of slowing down neurodegeneration associated with ALS progression in preclinical models of the disease in vitro and in vivo. Notably, we produced data to demonstrate that the treatment with the newly synthesized compound III: (1) prevented the upregulation of TNF-α observed in BV-2 microglial cells exposed to the toxin lipopolysaccharides (LPS), (2) preserved SHSY-5Y cell survival exposed to ß-N-methylamino-l-alanine (L-BMAA) neurotoxin, and (3) mitigated motor symptoms and improved survival rate of SOD1G93A ALS mice. In conclusion, the findings of the present work support the potential of the synthesized indolylacetic derivatives II-IV in ALS treatment. Indeed, in the attempt to realize an association between two active molecules, we assumed that the combination of the indispensable moieties of two small molecules (the opioids containing a 4-piperidinyl ring with the FANS indomethacin) might lead to new medicaments potentially useful for the treatment of amyotrophic lateral sclerosis.

17.
Eur J Med Chem ; 275: 116636, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38944936

RESUMO

Asthma is a major noncommunicable disease, affecting both children and adults, and represents one of the major causes leading to high health care costs due to the need for chronic pharmacological treatments. The standard gold therapy of inflammation in asthmatic patients involves the use of glucocorticoids even if their chronic use is often related to serious adverse effects. Growing evidence suggests the biological relevance of hydrogen sulfide (H2S) in the pathogenesis of airway diseases. Hence, aiming to associate the beneficial effects of steroidal anti-inflammatory drugs (SAIDs) to H2S biological activity, we designed and synthesized novel multi-target molecules by chemically combining a group of glucocorticoids, usually employed in asthma treatment, with an isothiocyanate moiety, well-known for its H2S releasing properties. Firstly, the synthesized compounds have been screened for their H2S-releasing profile using an amperometric approach and for their in vitro effects on the degranulation process, using RBL-2H3 cell line. The physicochemical profile, in terms of solubility, chemical and enzymatic stability of the newly hybrid molecules, has been assessed at different physiological pH values and in esterase-rich medium (bovine serum albumin, BSA). The selected compound 5c, through both its corticosteroid and H2S releasing component, has been evaluated in vivo in experimental model of asthma. The compound 5c inhibited in vivo all asthma features with a significative effect on the restoration of pulmonary structure and reduction of lung inflammation.


Assuntos
Asma , Isotiocianatos , Asma/tratamento farmacológico , Animais , Isotiocianatos/química , Isotiocianatos/farmacologia , Isotiocianatos/síntese química , Ratos , Corticosteroides/farmacologia , Corticosteroides/química , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/química , Sulfeto de Hidrogênio/farmacologia , Estrutura Molecular , Relação Estrutura-Atividade , Antiasmáticos/farmacologia , Antiasmáticos/química , Antiasmáticos/síntese química , Antiasmáticos/uso terapêutico , Relação Dose-Resposta a Droga , Humanos , Masculino , Linhagem Celular
18.
J Pept Sci ; 19(11): 717-24, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24133031

RESUMO

Sphingosine-1-phosphate (S1P) is a bioactive lipid with key functions in the immune, inflammatory, and cardiovascular systems. S1P exerts its action through the interaction with a family of five known G protein-coupled receptors, named S1P(1-5). Among them, S1P(3) has been implicated in the pathological processes of a number of diseases, including sepsis and cancer. KRX-725 (compound 1) is a pepducin that mimics the effects of S1P by triggering specifically S1P(3). Here, aiming to identify novel S1P(3) antagonists, we carried out an alanine scanning analysis to address the contribution of the side chains of each amino acid residue to the peptide function. Then, deleted peptides from both the C- and N-terminus were prepared in order to determine the minimal sequence for activity and to identify the structural requirements for agonistic and, possibly, antagonistic behaviors. The pharmacological results of the Ala-scan derived compounds (2-10) suggested a high tolerance of the pepducin 1 to amino acid substitutions. Importantly, the deleted peptide 16 has the ability to inhibit, in a dose-dependent manner, both pepducin 1-induced vasorelaxation and fibroblast proliferation. Finally, a computational analysis was performed on the prepared compounds, showing that the supposed antagonists 16 and 17 appeared to be aligned with each other but not with the others. These results suggested a correlation between specific conformations and activities.


Assuntos
Peptídeos Penetradores de Células/farmacologia , Fragmentos de Peptídeos/farmacologia , Receptores de Lisoesfingolipídeo/antagonistas & inibidores , Vasodilatadores/farmacologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/fisiologia , Proliferação de Células/efeitos dos fármacos , Peptídeos Penetradores de Células/química , Células Cultivadas , Técnicas In Vitro , Masculino , Camundongos , Modelos Moleculares , Contração Muscular/efeitos dos fármacos , Fragmentos de Peptídeos/química , Receptores de Lisoesfingolipídeo/química , Receptores de Lisoesfingolipídeo/metabolismo , Receptores de Esfingosina-1-Fosfato , Vasodilatadores/química
19.
Mar Drugs ; 12(1): 36-53, 2013 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-24368568

RESUMO

In the present study we provide evidence that solomonsterol A, a selective pregnane X receptor (PXR) agonist isolated from the marine sponge Theonella swinhoei, exerts anti-inflammatory activity and attenuates systemic inflammation and immune dysfunction in a mouse model of rheumatoid arthritis. Solomonsterol A was effective in protecting against the development of arthritis induced by injecting transgenic mice harboring a humanized PXR, with anti-collagen antibodies (CAIA) with beneficial effects on joint histopathology and local inflammatory response reducing the expression of inflammatory markers (TNFα, IFNγ and IL-17 and chemokines MIP1α and RANTES) in draining lymph nodes. Solomonsterol A rescued mice from systemic inflammation were assessed by measuring arthritis score, CRP and cytokines in the blood. In summary, the present study provides a molecular basis for the regulation of systemic local and systemic immunity by PXR agonists.


Assuntos
Anti-Inflamatórios , Artrite Reumatoide/tratamento farmacológico , Colanos/farmacologia , Síndromes de Imunodeficiência/tratamento farmacológico , Poríferos/química , Receptores de Esteroides/agonistas , Ésteres do Ácido Sulfúrico/farmacologia , Animais , Artrite Reumatoide/induzido quimicamente , Artrite Reumatoide/patologia , Proteína C-Reativa/metabolismo , Cartilagem/patologia , Quimiocina CCL3/metabolismo , Quimiocina CCL5/metabolismo , Colágeno Tipo II , Citocinas/sangue , Hepatócitos/efeitos dos fármacos , Humanos , Interferon gama/metabolismo , Interleucina-17/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Linfonodos/efeitos dos fármacos , Linfonodos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Moleculares , Conformação Molecular , Receptor de Pregnano X , Receptores de Esteroides/biossíntese , Receptores de Esteroides/genética , Ativação Transcricional , Fator de Necrose Tumoral alfa/metabolismo
20.
Front Pharmacol ; 14: 1266934, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37900172

RESUMO

Introduction: Hydrogen sulfide (H2S) is emerging as an important potential therapeutic option for respiratory inflammatory diseases. In this study, we investigated the effectiveness of a novel corticosteroid derivative, that is chemically linked to an H2S donor, in managing asthma features. Methods: The effects of prednisone (PS), H2S donor (4-hydroxybenzamide; TBZ), and their combination (PS-TBZ) have been evaluated in vitro and in vivo. The in vitro experiments were conducted using lipopolysaccharidestimulated J774 macrophages, while the in vivo experiments utilizing an experimental asthma model. Results: In the in vitro study we found that PS-TBZ exhibited an increased effect compared to the individual parent compounds in modulating the production of inflammatory mediators. TBZ also significantly reduced bronchial contractility and enhanced bronchial relaxation. In the in vivo experiments, where we administered PS, TBZ, or PS-TBZ to ovalbumin-sensitized BALB/c mice, we confirmed that PS-TBZ had a significantly better action in controlling airway hyperreactivity as compared to TBZ or PS alone. Moreover, PS-TBZ was more effective in restoring salbutamol-induced relaxation. The immunohistochemistry analysis demonstrated a significant reduction in the production of α-SMA and procollagen III, indicating the efficacy of PS-TBZ in controlling airway remodeling. Moreover, PS-TBZ also promoted epithelial repair, recovery of the bronchial and parenchyma structure and inhibited mucin production. Discussion: In conclusion, PS-TBZ offers an important opportunity to optimize the beneficial impact of corticosteroids on asthma features.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA