Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Circ Res ; 132(4): 519-540, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36795845

RESUMO

During cardiac development and morphogenesis, cardiac progenitor cells differentiate into cardiomyocytes that expand in number and size to generate the fully formed heart. Much is known about the factors that regulate initial differentiation of cardiomyocytes, and there is ongoing research to identify how these fetal and immature cardiomyocytes develop into fully functioning, mature cells. Accumulating evidence indicates that maturation limits proliferation and conversely proliferation occurs rarely in cardiomyocytes of the adult myocardium. We term this oppositional interplay the proliferation-maturation dichotomy. Here we review the factors that are involved in this interplay and discuss how a better understanding of the proliferation-maturation dichotomy could advance the utility of human induced pluripotent stem cell-derived cardiomyocytes for modeling in 3-dimensional engineered cardiac tissues to obtain truly adult-level function.


Assuntos
Células-Tronco Pluripotentes Induzidas , Engenharia Tecidual , Humanos , Engenharia Tecidual/métodos , Miócitos Cardíacos/fisiologia , Miocárdio , Diferenciação Celular/fisiologia , Proliferação de Células
2.
Int J Mol Sci ; 25(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38473751

RESUMO

The diaphragm muscle is essential for breathing, and its dysfunctions can be fatal. Many disorders affect the diaphragm, including muscular dystrophies. Despite the clinical relevance of targeting the diaphragm, there have been few studies evaluating diaphragm function following a given experimental treatment, with most of these involving anti-inflammatory drugs or gene therapy. Cell-based therapeutic approaches have shown success promoting muscle regeneration in several mouse models of muscular dystrophy, but these have focused mainly on limb muscles. Here we show that transplantation of as few as 5000 satellite cells directly into the diaphragm results in consistent and robust myofiber engraftment in dystrophin- and fukutin-related protein-mutant dystrophic mice. Transplanted cells also seed the stem cell reservoir, as shown by the presence of donor-derived satellite cells. Force measurements showed enhanced diaphragm strength in engrafted muscles. These findings demonstrate the feasibility of cell transplantation to target the diseased diaphragm and improve its contractility.


Assuntos
Distrofia Muscular de Duchenne , Camundongos , Animais , Distrofia Muscular de Duchenne/genética , Diafragma , Camundongos Endogâmicos mdx , Músculo Esquelético , Transplante de Células
3.
Cell Mol Life Sci ; 79(8): 406, 2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35802202

RESUMO

Muscular dystrophy encompasses a large number of heterogeneous genetic disorders characterized by progressive and devastating muscle wasting. Cell-based replacement strategies aimed at promoting skeletal muscle regeneration represent a candidate therapeutic approach to treat muscular dystrophies. Due to the difficulties of obtaining large numbers of stem cells from a muscle biopsy as well as expanding these in vitro, pluripotent stem cells (PSCs) represent an attractive cell source for the generation of myogenic progenitors, given that PSCs can repeatedly produce large amounts of lineage-specific tissue, representing an unlimited source of cells for therapy. In this review, we focus on the progress to date on different methods for the generation of human PSC-derived myogenic progenitor cells, their regenerative capabilities upon transplantation, their potential for allogeneic and autologous transplantation, as well as the specific challenges to be considered for future therapeutic applications.


Assuntos
Células-Tronco Pluripotentes Induzidas , Distrofias Musculares , Células-Tronco Pluripotentes , Diferenciação Celular , Humanos , Desenvolvimento Muscular , Músculo Esquelético/fisiologia , Distrofias Musculares/terapia , Transplante de Células-Tronco
4.
PLoS Biol ; 17(2): e3000153, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30807574

RESUMO

The transcriptional mechanisms driving lineage specification during development are still largely unknown, as the interplay of multiple transcription factors makes it difficult to dissect these molecular events. Using a cell-based differentiation platform to probe transcription function, we investigated the role of the key paraxial mesoderm and skeletal myogenic commitment factors-mesogenin 1 (Msgn1), T-box 6 (Tbx6), forkhead box C1 (Foxc1), paired box 3 (Pax3), Paraxis, mesenchyme homeobox 1 (Meox1), sine oculis-related homeobox 1 (Six1), and myogenic factor 5 (Myf5)-in paraxial mesoderm and skeletal myogenesis. From this study, we define a genetic hierarchy, with Pax3 emerging as the gatekeeper between the presomitic mesoderm and the myogenic lineage. By assaying chromatin accessibility, genomic binding and transcription profiling in mesodermal cells from mouse and human Pax3-induced embryonic stem cells and Pax3-null embryonic day (E)9.5 mouse embryos, we identified conserved Pax3 functions in the activation of the skeletal myogenic lineage through modulation of Hedgehog, Notch, and bone morphogenetic protein (BMP) signaling pathways. In addition, we demonstrate that Pax3 molecular function involves chromatin remodeling of its bound elements through an increase in chromatin accessibility and cooperation with sine oculis-related homeobox 4 (Six4) and TEA domain family member 2 (Tead2) factors. To our knowledge, these data provide the first integrated analysis of Pax3 function, demonstrating its ability to remodel chromatin in mesodermal cells from developing embryos and proving a mechanistic footing for the transcriptional hierarchy driving myogenesis.


Assuntos
Montagem e Desmontagem da Cromatina , Proteínas de Ligação a DNA/genética , Proteínas de Homeodomínio/genética , Mesoderma/metabolismo , Células Musculares/metabolismo , Desenvolvimento Muscular/genética , Fator de Transcrição PAX3/genética , Transativadores/genética , Fatores de Transcrição/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Embrião de Mamíferos , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Humanos , Mesoderma/citologia , Mesoderma/crescimento & desenvolvimento , Camundongos , Camundongos Transgênicos , Células Musculares/citologia , Músculo Esquelético/citologia , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/metabolismo , Fator Regulador Miogênico 5/genética , Fator Regulador Miogênico 5/metabolismo , Fator de Transcrição PAX3/metabolismo , Transdução de Sinais , Proteínas com Domínio T , Fatores de Transcrição de Domínio TEA , Transativadores/metabolismo , Fatores de Transcrição/metabolismo
5.
Proc Natl Acad Sci U S A ; 116(10): 4346-4351, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30760602

RESUMO

Optimal cell-based therapies for the treatment of muscle degenerative disorders should not only regenerate fibers but provide a quiescent satellite cell pool ensuring long-term maintenance and regeneration. Conditional expression of Pax3/Pax7 in differentiating pluripotent stem cells (PSCs) allows the generation of myogenic progenitors endowed with enhanced regenerative capacity. To identify the molecular determinants underlying their regenerative potential, we performed transcriptome analyses of these cells along with primary myogenic cells from several developmental stages. Here we show that in vitro-generated PSC-derived myogenic progenitors possess a molecular signature similar to embryonic/fetal myoblasts. However, compared with fetal myoblasts, following transplantation they show superior myofiber engraftment and ability to seed the satellite cell niche, respond to multiple reinjuries, and contribute to long-term regeneration. Upon engraftment, the transcriptome of reisolated Pax3/Pax7-induced PSC-derived myogenic progenitors changes toward a postnatal molecular signature, particularly in genes involved in extracellular matrix remodeling. These findings demonstrate that Pax3/Pax7-induced myogenic progenitors remodel their molecular signature and functionally mature upon in vivo exposure to the adult muscle environment.


Assuntos
Desenvolvimento Muscular/fisiologia , Fator de Transcrição PAX3/metabolismo , Fator de Transcrição PAX7/metabolismo , Células-Tronco Pluripotentes/metabolismo , Animais , Diferenciação Celular , Perfilação da Expressão Gênica , Camundongos , Desenvolvimento Muscular/genética , Músculo Esquelético , Mioblastos/metabolismo , Fator de Transcrição PAX3/genética , Fator de Transcrição PAX7/genética , Transcriptoma
6.
Blood ; 133(7): 688-696, 2019 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-30593445

RESUMO

Transforming growth factor ß (TGF-ß) is well known for its important function in hematopoietic stem cell (HSC) quiescence. However, the molecular mechanism underlining this function remains obscure. Endoglin (Eng), a type III receptor for the TGF-ß superfamily, has been shown to selectively mark long-term HSCs; however, its necessity in adult HSCs is unknown due to embryonic lethality. Using conditional deletion of Eng combined with serial transplantation, we show that this TGF-ß receptor is critical to maintain the HSC pool. Transplantation of Eng-deleted whole bone marrow or purified HSCs into lethally irradiated mice results in a profound engraftment defect in tertiary and quaternary recipients. Cell cycle analysis of primary grafts revealed decreased frequency of HSCs in G0, suggesting that lack of Eng impairs reentry of HSCs to quiescence. Using cytometry by time of flight (CyTOF) to evaluate the activity of signaling pathways in individual HSCs, we find that Eng is required within the Lin-Sca+Kit+-CD48- CD150+ fraction for canonical and noncanonical TGF-ß signaling, as indicated by decreased phosphorylation of SMAD2/3 and the p38 MAPK-activated protein kinase 2, respectively. These findings support an essential role for Eng in positively modulating TGF-ß signaling to ensure maintenance of HSC quiescence.


Assuntos
Endoglina/metabolismo , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Animais , Ciclo Celular , Endoglina/genética , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Transdução de Sinais
7.
Mol Ther ; 27(12): 2147-2157, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31501033

RESUMO

Limb girdle muscular dystrophy type 2A (LGMD2A), caused by mutations in the Calpain 3 (CAPN3) gene, is an incurable autosomal recessive disorder that results in muscle wasting and loss of ambulation. To test the feasibility of an autologous induced pluripotent stem cell (iPSC)-based therapy for LGMD2A, here we applied CRISPR-Cas9-mediated genome editing to iPSCs from three LGMD2A patients to enable correction of mutations in the CAPN3 gene. Using a gene knockin approach, we genome edited iPSCs carrying three different CAPN3 mutations, and we demonstrated the rescue of CAPN3 protein in myotube derivatives in vitro. Transplantation of gene-corrected LGMD2A myogenic progenitors in a novel mouse model combining immunodeficiency and a lack of CAPN3 resulted in muscle engraftment and rescue of the CAPN3 mRNA. Thus, we provide here proof of concept for the integration of genome editing and iPSC technologies to develop a novel autologous cell therapy for LGMD2A.


Assuntos
Calpaína/fisiologia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Proteínas Musculares/fisiologia , Músculo Esquelético/metabolismo , Distrofia Muscular do Cíngulo dos Membros/terapia , Mutação , Animais , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/patologia , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/patologia , Transplante Autólogo
8.
J Cell Sci ; 130(21): 3685-3697, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28935672

RESUMO

Facioscapulohumeral muscular dystrophy (FSHD) is caused by inappropriate expression of the double homeodomain protein DUX4. DUX4 has bimodal effects, inhibiting myogenic differentiation and blocking MyoD at low levels of expression, and killing myoblasts at high levels. Pax3 and Pax7, which contain related homeodomains, antagonize the cell death phenotype of DUX4 in C2C12 cells, suggesting some type of competitive interaction. Here, we show that the effects of DUX4 on differentiation and MyoD expression require the homeodomains but do not require the C-terminal activation domain of DUX4. We tested the set of equally related homeodomain proteins (Pax6, Pitx2c, OTX1, Rax, Hesx1, MIXL1 and Tbx1) and found that only Pax3 and Pax7 display phenotypic competition. Domain analysis on Pax3 revealed that the Pax3 homeodomain is necessary for phenotypic competition, but is not sufficient, as competition also requires the paired and transcriptional activation domains of Pax3. Remarkably, substitution mutants in which DUX4 homeodomains are replaced by Pax7 homeodomains retain the ability to inhibit differentiation and to induce cytotoxicity.


Assuntos
Proteínas de Homeodomínio/genética , Células Musculares/metabolismo , Desenvolvimento Muscular/genética , Proteína MyoD/genética , Fator de Transcrição PAX3/genética , Fator de Transcrição PAX7/genética , Sequência de Aminoácidos , Animais , Diferenciação Celular , Linhagem Celular , Regulação da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Células Musculares/patologia , Proteína MyoD/metabolismo , Mioblastos/metabolismo , Mioblastos/patologia , Fator de Transcrição PAX3/metabolismo , Fator de Transcrição PAX7/metabolismo , Domínios Proteicos , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais
9.
Blood ; 129(18): 2526-2536, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28351936

RESUMO

Endoglin (CD105), a receptor of the transforming growth factor-ß superfamily, has been reported to identify functional long-term repopulating hematopoietic stem cells, and has been detected in certain subtypes of acute leukemias. Whether this receptor plays a functional role in leukemogenesis remains unknown. We identified endoglin expression on the majority of blasts from patients with acute myeloid leukemia (AML) and acute B-lymphoblastic leukemia (B-ALL). Using a xenograft model, we find that CD105+ blasts are endowed with superior leukemogenic activity compared with the CD105- population. We test the effect of targeting this receptor using the monoclonal antibody TRC105, and find that in AML, TRC105 prevented the engraftment of primary AML blasts and inhibited leukemia progression following disease establishment, but in B-ALL, TRC105 alone was ineffective due to the shedding of soluble CD105. However, in both B-ALL and AML, TRC105 synergized with reduced intensity myeloablation to inhibit leukemogenesis, indicating that TRC105 may represent a novel therapeutic option for B-ALL and AML.


Assuntos
Anticorpos Monoclonais/farmacologia , Anticorpos Antineoplásicos/farmacologia , Crise Blástica/tratamento farmacológico , Endoglina/antagonistas & inibidores , Leucemia Mieloide Aguda/tratamento farmacológico , Proteínas de Neoplasias/antagonistas & inibidores , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Adolescente , Idoso , Idoso de 80 Anos ou mais , Animais , Crise Blástica/metabolismo , Crise Blástica/patologia , Criança , Pré-Escolar , Endoglina/metabolismo , Feminino , Humanos , Lactente , Células Jurkat , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Pessoa de Meia-Idade , Proteínas de Neoplasias/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Stem Cells ; 32(8): 2072-83, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24677751

RESUMO

Embryonic stem cells (ESCs) represent an ideal model to study how lineage decisions are established during embryonic development. Using a doxycycline-inducible mouse ESC line, we have previously shown that expression of the transcriptional activator Pax3 in early mesodermal cells leads to the robust generation of paraxial mesoderm progenitors that ultimately differentiate into skeletal muscle precursors. Here, we show that the ability of this transcription factor to induce the skeletal myogenic cell fate occurs at the expenses of the cardiac lineage. Our results show that the PDGFRα+FLK1--subfraction represents the main population affected by Pax3, through downregulation of several transcripts encoding for proteins involved in cardiac development. We demonstrate that although Nkx2-5, Tbx5, and Gata4 negatively affect Pax3 skeletal myogenic activity, the cardiac potential of embryoid body-derived cultures is restored solely by forced expression of Tbx5. Taking advantage of this model, we used an unbiased genome-wide approach to identify genes whose expression is rescued by Tbx5, and which could represent important regulators of cardiac development. These findings elucidate mechanisms regulating the commitment of mesodermal cells in the early embryo and identify the Tbx5 cardiac transcriptome.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/metabolismo , Músculo Esquelético/citologia , Miocárdio/citologia , Fatores de Transcrição Box Pareados/metabolismo , Proteínas com Domínio T/metabolismo , Animais , Western Blotting , Linhagem da Célula , Citometria de Fluxo , Imunofluorescência , Regulação da Expressão Gênica no Desenvolvimento , Coração/embriologia , Mesoderma/citologia , Mesoderma/metabolismo , Camundongos , Músculo Esquelético/embriologia , Fator de Transcrição PAX3 , Técnicas de Patch-Clamp , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/biossíntese
11.
Blood ; 119(23): 5417-28, 2012 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-22535663

RESUMO

Much remains unknown about the signals that induce early mesoderm to initiate hematopoietic differentiation. Here, we show that endoglin (Eng), a receptor for the TGFß superfamily, identifies all cells with hematopoietic fate in the early embryo. These arise in an Eng(+)Flk1(+) mesodermal precursor population at embryonic day 7.5 (E7.5), a cell fraction also endowed with endothelial potential. In Eng-knockout embryos, hematopoietic colony activity and numbers of CD71(+)Ter119(+) erythroid progenitors were severely reduced. This coincided with severely reduced expression of embryonic globin and key bone morphogenic protein (BMP) target genes, including the hematopoietic regulators Scl, Gata1, Gata2, and Msx-1. To interrogate molecular pathways active in the earliest hematopoietic progenitors, we applied transcriptional profiling to sorted cells from E7.5 embryos. Eng(+)Flk-1(+) progenitors coexpressed TGFß and BMP receptors and target genes. Furthermore, Eng(+)Flk-1(+) cells presented high levels of phospho-SMAD1/5, indicating active TGFß and/or BMP signaling. Remarkably, under hematopoietic serum-free culture conditions, hematopoietic outgrowth of Eng-expressing cells was dependent on the TGFß superfamily ligands BMP4, BMP2, or TGF-ß1. These data demonstrate that the E(+)F(+) fraction at E7.5 represents mesodermal cells competent to respond to TGFß1, BMP4, or BMP2, shaping their hematopoietic development, and that Eng acts as a critical regulator in this process by modulating TGF/BMP signaling.


Assuntos
Embrião de Mamíferos/metabolismo , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Animais , Proteína Morfogenética Óssea 2/metabolismo , Proteína Morfogenética Óssea 4/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/ultraestrutura , Desenvolvimento Embrionário , Endoglina , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Células-Tronco Hematopoéticas/citologia , Peptídeos e Proteínas de Sinalização Intracelular/análise , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
12.
Stem Cells ; 31(1): 59-70, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23081715

RESUMO

The paired box transcription factor Pax3 is well-known as a major regulator of embryonic myogenesis. Before Pax3 expression becomes restricted to the dermomyotome, this transcription factor is also expressed in the developing somites. The role of Pax3 at this early stage is unclear, in particular because of the scarce frequency of Pax3-positive cells in the early mouse embryo. Inducible gene expression in embryonic stem cells (ESCs) represents an excellent tool to overcome this limitation, since it can provide large quantities of otherwise rare embryonic populations expressing a factor of interest. Here we used engineered mouse ESCs to perform a functional analysis of Pax3 with the aim to identify the molecular determinants involved in the early functions of this transcription factor. We find that Pax3 induction during embryoid body differentiation results in the upregulation of genes expressed in the presomitic and somitic mesoderm. Moreover, we show that paraxial mesoderm induced by transient expression of Pax3 is not irreversibly committed to myogenesis rather requires sustained Pax3 expression. Using a series of deletion mutants of Pax3, which differentially affect its transcriptional activity, we map protein domains necessary for induction of paraxial mesoderm and induction of the myogenic program. The paired, homeo-, and transcriptional activation domains were each required for both processes, however, the paired-c-terminal RED domain showed a paraxial mesoderm-specific activity that was dispensable for myogenesis. These findings demonstrate and provide mechanistic insight into an early role for Pax3 in the generation of paraxial mesoderm.


Assuntos
Células-Tronco Embrionárias/metabolismo , Mesoderma/embriologia , Desenvolvimento Muscular/genética , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição Box Pareados/metabolismo , Animais , Diferenciação Celular/genética , Linhagem Celular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Mesoderma/metabolismo , Camundongos , Fator de Transcrição PAX3 , Estrutura Terciária de Proteína/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Deleção de Sequência , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
13.
Stem Cells ; 31(9): 1893-901, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23712751

RESUMO

Endoglin (Eng), an ancillary receptor of the transforming growth factor beta (TGFß) signaling pathway superfamily, has been well recognized for its important function in vascular development and angiogenesis since its discovery more than a decade ago. Recent studies show that this receptor is also critical for the emergence of blood during embryonic development, and that at E7.5, endoglin together with Flk-1 identifies early mesoderm progenitors that are endowed with hematopoietic and endothelial potential. These two lineages emerge in very close association during embryogenesis, and because they share the expression of the same surface markers, it has been difficult to distinguish the earliest hematopoietic from endothelial cells. Here, we evaluated the function of endoglin in hematopoiesis as development progresses past E7.5, and found that the hematopoietic and endothelial progenitors can be distinguished by the levels of endoglin in E9.5 yolk sacs. Whereas endothelial cells are Eng(bright), hematopoietic activity is primarily restricted to a subset of cells that display dim expression of endoglin (Eng(dim)). Molecular characterization of these subfractions showed that endoglin-mediated induction of hematopoiesis occurs in concert with BMP2/BMP4 signaling. This pathway is highly active in Eng(dim) cells but significantly downregulated in the Eng knockout. Taken together, our findings show an important function for endoglin in mediating BMP2/BMP4 signaling during yolk sac hematopoietic development and suggest that the levels of this receptor modulate TGFß versus bone morphogenetic protein (BMP) signaling.


Assuntos
Células Endoteliais/citologia , Regulação da Expressão Gênica no Desenvolvimento , Hematopoese/genética , Células-Tronco Hematopoéticas/citologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Saco Vitelino/citologia , Saco Vitelino/embriologia , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Endoglina , Células Endoteliais/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Modelos Biológicos , Transdução de Sinais , Frações Subcelulares/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Saco Vitelino/metabolismo
14.
Stem Cells ; 31(8): 1611-20, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23606600

RESUMO

Transplantation of a myogenic cell population into an immunodeficient recipient is an excellent way of assessing the in vivo muscle-generating capacity of that cell population. To facilitate both allogeneic and xenogeneic transplantations of muscle-forming cells in mice, we have developed a novel immunodeficient muscular dystrophy model, the NSG-mdx(4Cv) mouse. The IL2Rg mutation, which is linked to the Dmd gene on the X chromosome, simultaneously depletes NK cells and suppresses thymic lymphomas, issues that limit the utility of the SCID/mdx model. The NSG-mdx(4Cv) mouse presents a muscular dystrophy of similar severity to the conventional mdx mouse. We show that this animal supports robust engraftment of both pig and dog muscle mononuclear cells. The question of whether satellite cells prospectively isolated by flow cytometry can confer a functional benefit upon transplantation has been controversial. Using allogeneic Pax7-ZsGreen donors and NSG-mdx(4Cv) recipients, we demonstrate definitively that as few as 900 FACS-isolated satellite cells can provide functional regeneration in vivo, in the form of an increased mean maximal force-generation capacity in cell-transplanted muscles, compared to a sham-injected control group. These studies highlight the potency of satellite cells to improve muscle function and the utility of the NSG-mdx(4Cv) model for studies on muscle regeneration and Duchenne muscular dystrophy therapy.


Assuntos
Distrofina/deficiência , Distrofia Muscular de Duchenne/cirurgia , Células Satélites de Músculo Esquelético/transplante , Transplante de Células-Tronco/métodos , Animais , Modelos Animais de Doenças , Cães , Distrofina/genética , Distrofina/metabolismo , Feminino , Genótipo , Xenoenxertos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/fisiopatologia , Células Satélites de Músculo Esquelético/citologia , Suínos , Transplante Homólogo
15.
NPJ Regen Med ; 9(1): 16, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575647

RESUMO

Pluripotent stem cell (PSC)-based cell therapy is an attractive option for the treatment of multiple human disorders, including muscular dystrophies. While in vitro differentiating PSCs can generate large numbers of human lineage-specific tissue, multiple studies evidenced that these cell populations mostly display embryonic/fetal features. We previously demonstrated that transplantation of PSC-derived myogenic progenitors provides long-term engraftment and functional improvement in several dystrophic mouse models, but it remained unknown whether donor-derived myofibers mature to match adult tissue. Here, we transplanted iPAX7 myogenic progenitors into muscles of non-dystrophic and dystrophic mice and compared the transcriptional landscape of human grafts with respective in vitro-differentiated iPAX7 myotubes as well as human skeletal muscle biospecimens. Pairing bulk RNA sequencing with computational deconvolution of human reads, we were able to pinpoint key myogenic changes that occur during the in vitro-to-in vivo transition, confirm developmental maturity, and consequently evaluate their applicability for cell-based therapies.

16.
Cells ; 13(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38891104

RESUMO

Mutations in the DMD gene cause fatal Duchenne Muscular Dystrophy (DMD). An attractive therapeutic approach is autologous cell transplantation utilizing myogenic progenitors derived from induced pluripotent stem cells (iPSCs). Given that a significant number of DMD mutations occur between exons 45 and 55, we developed a gene knock-in approach to correct any mutations downstream of exon 44. We applied this approach to two DMD patient-specific iPSC lines carrying mutations in exons 45 and 51 and confirmed mini-DYSTROPHIN (mini-DYS) protein expression in corrected myotubes by western blot and immunofluorescence staining. Transplantation of gene-edited DMD iPSC-derived myogenic progenitors into NSG/mdx4Cv mice produced donor-derived myofibers, as shown by the dual expression of human DYSTROPHIN and LAMIN A/C. These findings further provide proof-of-concept for the use of programmable nucleases for the development of autologous iPSC-based therapy for muscular dystrophies.


Assuntos
Sistemas CRISPR-Cas , Distrofina , Éxons , Células-Tronco Pluripotentes Induzidas , Distrofia Muscular de Duchenne , Mutação , Células-Tronco Pluripotentes Induzidas/metabolismo , Distrofina/genética , Distrofina/metabolismo , Humanos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Distrofia Muscular de Duchenne/patologia , Sistemas CRISPR-Cas/genética , Éxons/genética , Mutação/genética , Animais , Camundongos , Edição de Genes/métodos , Fibras Musculares Esqueléticas/metabolismo
17.
Blood ; 118(1): 88-97, 2011 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-21602526

RESUMO

Endoglin (Eng), an accessory receptor for the transforming growth factor ß (TGF-ß) superfamily, is required for proper hemangioblast and primitive hematopoietic development. However the mechanism by which endoglin functions at this early developmental stage is currently unknown. Transcriptional analyses of differentiating eng(-/-) and eng(+/+) ES cells revealed that lack of endoglin leads to profound reductions in the levels of key hematopoietic regulators, including Scl, Lmo2, and Gata2. We also detected lower levels of phosphorylated Smad1 (pSmad1), a downstream target signaling molecule associated with the TGF-ß pathway. Using doxycycline-inducible ES cell lines, we interrogated the TGF-ß signaling pathway by expressing activated forms of ALK-1 and ALK-5, type I receptors for TGF-ß. Our results indicate that ALK-1 signaling promotes hemangioblast development and hematopoiesis, as evidenced by colony assays, gene expression and FACS analyses, whereas signaling by ALK-5 leads to the opposite effect, inhibition of hemangioblast and hematopoietic development. In Eng(-/-) ES cells, ALK-1 rescued both the defective hemangioblast development, and primitive erythropoiesis, indicating that ALK-1 signaling can compensate for the absence of endoglin. We propose that endoglin regulates primitive hematopoiesis by modulating the activity of the Smad1/5 signaling pathway in early stages of development.


Assuntos
Medula Óssea/embriologia , Hemangioblastos/metabolismo , Hematopoese/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta1/metabolismo , Receptores de Ativinas Tipo I/genética , Receptores de Ativinas Tipo I/metabolismo , Receptores de Activinas Tipo II , Animais , Medula Óssea/metabolismo , Linhagem Celular , Endoglina , Fibroblastos/citologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Hemangioblastos/citologia , Camundongos , Fenótipo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Proteína Smad1/metabolismo , Proteína Smad5/metabolismo
18.
Stem Cells ; 30(8): 1611-23, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22628281

RESUMO

During embryogenesis, the endothelial and the hematopoietic lineages first appear during gastrulation in the blood island of the yolk sac. We have previously reported that an Ets variant gene 2 (Etv2/ER71) mutant embryo lacks hematopoietic and endothelial lineages; however, the precise roles of Etv2 in yolk sac development remains unclear. In this study, we define the role of Etv2 in yolk sac blood island development using the Etv2 mutant and a novel Etv2-EYFP reporter transgenic line. Both the hematopoietic and the endothelial lineages are absent in the Etv2 mutant yolk sac. In the Etv2-EYFP transgenic mouse, the EYFP reporter is activated in the nascent mesoderm, expressed in the endothelial and blood progenitors, and in the Tie2(+), c-kit(+), and CD41(+) hematopoietic population. The hematopoietic activity in the E7.75 yolk sac was exclusively localized to the Etv2-EYFP(+) population. In the Etv2 mutant yolk sac, Tie2(+) cells are present but do not express hematopoietic or endothelial markers. In addition, these cells do not form hematopoietic colonies, indicating an essential role of Etv2 in the specification of the hematopoietic lineage. Forced overexpression of Etv2 during embryoid body differentiation induces the hematopoietic and the endothelial lineages, and transcriptional profiling in this context identifies Lmo2 as a downstream target. Using electrophoretic mobility shift assay, chromatin immunoprecipitation, transcriptional assays, and mutagenesis, we demonstrate that Etv2 binds to the Lmo2 enhancer and transactivates its expression. Collectively, our studies demonstrate that Etv2 is expressed during and required for yolk sac hematoendothelial development, and that Lmo2 is one of the downstream targets of Etv2.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Células Endoteliais/citologia , Células-Tronco Hematopoéticas/metabolismo , Proteínas com Domínio LIM/metabolismo , Fatores de Transcrição/metabolismo , Saco Vitelino/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Diferenciação Celular/fisiologia , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais/fisiologia , Expressão Gênica , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/fisiologia , Humanos , Imuno-Histoquímica , Proteínas com Domínio LIM/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Fatores de Transcrição/genética , Transfecção , Saco Vitelino/citologia
19.
EMBO Mol Med ; 15(2): e15315, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36479608

RESUMO

This commentary provides a brief overview of the steps necessary for the generation of an induced pluripotent stem (iPS) cell-derived clinical grade product. This process requires extensive, proper documentation as well as a thoughtful and systematic optimization of the manufacturing methods to ensure maintenance of the key biological features of the product, compliance with current good manufacturing practices (cGMP), and most importantly patient safety. The scale-up and optimization also ideally include the identification of efficient and cost-effective purification/isolation and expansion of the target cell population.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Células-Tronco Pluripotentes Induzidas , Humanos , Diferenciação Celular
20.
Methods Mol Biol ; 2640: 129-142, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36995592

RESUMO

Pluripotent stem cells have a multitude of potential applications in the areas of disease modeling, drug screening, and cell-based therapies for genetic diseases, including muscular dystrophies. The advent of induced pluripotent stem cell technology allows for the facile derivation of disease-specific pluripotent stem cells for any given patient. Targeted in vitro differentiation of pluripotent stem cells into the muscle lineage is a key step to enable all these applications. Transgene-based differentiation using conditional expression of the transcription factor PAX7 leads to the efficient derivation of an expandable and homogeneous population of myogenic progenitors suitable for both in vitro and in vivo applications. Here, we describe an optimized protocol for the derivation and expansion of myogenic progenitors from pluripotent stem cells using conditional expression of PAX7. Importantly, we further describe an optimized procedure for the terminal differentiation of myogenic progenitors into more mature myotubes, which are better suited for in vitro disease modeling and drug screening studies.


Assuntos
Células-Tronco Pluripotentes Induzidas , Distrofias Musculares , Células-Tronco Pluripotentes , Humanos , Fibras Musculares Esqueléticas , Distrofias Musculares/metabolismo , Diferenciação Celular , Desenvolvimento Muscular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA