Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Phys Chem Chem Phys ; 19(8): 5959-5970, 2017 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-28177002

RESUMO

Perovskite solar cells (PSC) are shown to behave as coupled ionic-electronic conductors with strong evidence that the ionic environment moderates both the rate of electron-hole recombination and the band offsets in planar PSC. Numerous models have been presented to explain the behaviour of perovskite solar cells, but to date no single model has emerged that can explain both the frequency and time dependent response of the devices. Here we present a straightforward coupled ionic-electronic model that can be used to explain the large amplitude transient behaviour and the impedance response of PSC.

2.
Chemistry ; 20(46): 14971-5, 2014 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-25293365

RESUMO

Periodic mesoporous organosilica (PMO) materials offer a strategy to position molecular semiconductors within a highly defined, porous network. We developed thin films of a new semiconducting zinc phthalocyanine-bridged PMO exhibiting a face-centered orthorhombic pore structure with an average pore diameter of 11 nm. The exceptional degree of order achieved with this PMO enabled us to create thin films consisting of a single porous domain throughout their entire thickness, thus providing maximal accessibility for subsequent incorporation of a complementary phase. The phthalocyanine building blocks inside the pore walls were found to be well-aggregated, enabling electronic conductivity and extending the light-harvesting capabilities to the near IR region. Ordered 3D heterojunctions capable of promoting photo-induced charge transfer were constructed by impregnation of the PMO with a fullerene derivative. When integrated into a photovoltaic device, the infiltrated PMO is capable of producing a high open-circuit voltage and a considerable photocurrent, which represents a significant step towards potential applications of PMOs in optoelectronics.

3.
Chemphyschem ; 15(10): 1983-95, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-24819303

RESUMO

Some fundamental aspects of light-driven water splitting at semiconductor electrodes are reviewed along with recent experimental and theoretical progress. The roles of thermodynamics and kinetics in defining criteria for successful water-splitting systems are examined. An overview of recent research is given that places emphasis on new electrode materials, theoretical advances and the development of semi-quantitative experimental methods to study the dynamics of light-driven water-splitting reactions. Key areas are identified that will need particular attention as the search continues for stable, efficient and cost-effective light-driven photoelectrolysis systems that exploit electron/hole separation in semiconductor/electrolyte junctions.

4.
Phys Chem Chem Phys ; 16(44): 24610-20, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25310963

RESUMO

Numerous studies have shown that the performance of hematite photoanodes for light-driven water splitting is improved substantially by doping with various metals, including tin. Although the enhanced performance has commonly been attributed to bulk effects such as increased conductivity, recent studies have noted an impact of doping on the efficiency of the interfacial transfer of holes involved in the oxygen evolution reaction. However, the methods used were not able to elucidate the origin of this improved efficiency, which could originate from passivation of surface electron-hole recombination or catalysis of the oxygen evolution reaction. The present study used intensity-modulated photocurrent spectroscopy (IMPS), which is a powerful small amplitude perturbation technique that can de-convolute the rate constants for charge transfer and recombination at illuminated semiconductor electrodes. The method was applied to examine the kinetics of water oxidation on thin solution-processed hematite model photoanodes, which can be Sn-doped without morphological change. We observed a significant increase in photocurrent upon Sn-doping, which is attributed to a higher transfer efficiency. The kinetic data obtained using IMPS show that Sn-doping brings about a more than tenfold increase in the rate constant for water oxidation by photogenerated holes. This result provides the first demonstration that Sn-doping speeds up water oxidation on hematite by increasing the rate constant for hole transfer.

5.
J Am Chem Soc ; 134(2): 1228-34, 2012 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-22191733

RESUMO

Thin mesoporous films of α-Fe(2)O(3) have been prepared on conducting glass substrates using layer-by-layer self-assembly of ca. 4 nm hydrous oxide nanoparticles followed by calcining. The electrodes were used to study the oxygen evolution reaction (OER) in the dark and under illumination using in situ potential-modulated absorption spectroscopy (PMAS) and light-modulated absorption spectroscopy (LMAS) combined with impedance spectroscopy. Formation of surface-bound higher-valent iron species (or "surface trapped holes") was deduced from the PMAS spectra measured in the OER onset region. Similar LMAS spectra were obtained at more negative potentials in the onset region of photoelectrochemical OER, indicating involvement of the same intermediates. The impedance response of the mesoporous α-Fe(2)O(3) electrodes exhibits characteristic transmission line behavior that is attributed to slow hopping of holes, probably between surface iron species. Frequency-resolved PMAS and LMAS measurements revealed slow relaxation behavior that can be related to the impedance response and that indicates that the lifetime of the intermediates (or trapped holes) involved in the OER is remarkably long.

6.
Chemphyschem ; 13(12): 3035-46, 2012 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-22532426

RESUMO

A simple and useful thermodynamic approach to the prediction of reactions taking place during thermal treatment of layers of multinary semiconductor compounds on different substrates has been developed. The method, which uses the extensive information for the possible binary compounds to assess the stability of multinary phases, is illustrated with the examples of Cu(In,Ga)Se(2) and Cu(2)ZnSnSe(4) as well as other less-studied ternary and quaternary semiconductors that have the potential for use as absorbers in photovoltaic devices.

7.
Phys Chem Chem Phys ; 13(12): 5264-70, 2011 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-21229167

RESUMO

Photoelectrochemical Impedance Spectroscopy (PEIS) has been used to characterize the kinetics of electron transfer and recombination taking place during oxygen evolution at illuminated polycrystalline α-Fe(2)O(3) electrodes prepared by aerosol-assisted chemical vapour deposition from a ferrocene precursor. The PEIS results were analysed using a phenomenological approach since the mechanism of the oxygen evolution reaction is not known a priori. The results indicate that the photocurrent onset potential is strongly affected by Fermi level pinning since the rate constant for surface recombination is almost constant in this potential region. The phenomenological rate constant for electron transfer was found to increase with potential, suggesting that the potential drop in the Helmholtz layer influences the activation energy for the oxygen evolution process. The PEIS analysis also shows that the limiting factor determining the performance of the α-Fe(2)O(3) photoanode is electron-hole recombination in the bulk of the oxide.

8.
J Am Chem Soc ; 130(4): 1367-75, 2008 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-18177043

RESUMO

Solid-state dye-sensitized solar cells were fabricated using the organic hole-transporting medium (HTM) 2,2'7,7'-tetrakis-(N,N-di-p-methoxyphenyl-amine)-9,9'-spirobifluorene (spiro-MeOTAD), and three organic indoline-based sensitizer dyes with high molar extinction coefficients. The cells were characterized by several techniques, including spectral response measurements, photovoltage decay transients, intensity modulated photovoltage spectroscopy (IMVS), and charge extraction. The differences in apparent electron lifetime observed for cells fabricated using the three dyes are attributed in part to changes in the surface dipole potential at the TiO2/spiro-MeOTAD interface, which shift the TiO2 conduction band energy relative to the Fermi level of the HTM. These energy shifts influence both the open circuit voltage (as a result of changes in free electron density) and the short circuit current (as a consequence of changes in the overlap between the dye LUMO level and the conduction band). A self-consistent approach was used to derive the positions of the conduction band relative to the spiro-MeOTAD redox Fermi level for cells fabricated using the three dyes. The analysis also provided estimates of the free electron lifetime in spiro-MeOTAD cells. In order to evaluate the possible contribution of the adsorbed dyes to the observed changes in surface dipole potential, their dipole moments were estimated using ab initio density functional theory (DFT) calculations. Comparison of the calculated dipole contributions with the experimentally measured shifts in conduction band energy revealed that other factors such as proton adsorption may be predominant in determining the surface dipole potential.

9.
J Am Chem Soc ; 130(40): 13364-72, 2008 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-18774820

RESUMO

Dye-sensitized solar cells fabricated using ordered arrays of titania nanotubes (tube lengths 5, 10, and 20 microm) grown on titanium have been characterized by a range of experimental methods. The collection efficiency for photoinjected electrons in the cells is close to 100% under short circuit conditions, even for a 20 microm thick nanotube array. Transport, trapping, and back transfer of electrons in the nanotube cells have been studied in detail by a range of complementary experimental techniques. Analysis of the experimental results has shown that the electron diffusion length (which depends on the diffusion coefficient and lifetime of the photoinjected electrons) is of the order of 100 microm in the titania nanotube cells. This is consistent with the observation that the collection efficiency for electrons is close to 100%, even for the thickest (20 microm) nanotube films used in the study. The study revealed a substantial discrepancy between the shapes of the electron trap distributions measured experimentally using charge extraction techniques and those inferred indirectly from transient current and voltage measurements. The discrepancy is resolved by introduction of a numerical factor to account for non-ideal thermodynamic behavior of free electrons in the nanostructured titania.

10.
ACS Appl Mater Interfaces ; 9(47): 41265-41272, 2017 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-29099583

RESUMO

Photoelectrochemical (PEC) water oxidation is considered to be the rate-limiting step of the two half-reactions in light-driven water splitting. Consequently, considerable effort has focused on improving the performance of photoanodes for water oxidation. While these efforts have met with some success, the mechanisms responsible for improvements resulting from photoanode modifications are often difficult to determine. This is mainly caused by the entanglement of numerous properties that influence the PEC performance, particularly processes that occur at the photoanode/electrolyte interface. In this study, we set out to elucidate the effects on the surface carrier dynamics of hematite photoanodes of introducing manganese (Mn) into hematite nanorods and of creating a core-shell structure. Intensity-modulated photocurrent spectroscopy (IMPS) measurements reveal that the introduction of Mn into hematite not only increases the rate constant for hole transfer but also reduces the rate constant for surface recombination. In contrast, the core-shell architecture evidently passivates the surface states where recombination occurs; no change is observed for the charge transfer rate constant, whereas the surface recombination rate constant is suppressed by ∼1 order of magnitude.

11.
Chem Sci ; 8(5): 3712-3719, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28580106

RESUMO

Bismuth vanadate is one of the most promising photoanode materials for photoelectrochemical water splitting. In order to achieve high photocurrents the surface of BiVO4 always has to be modified with water oxidation catalysts, such as cobalt phosphate (CoPi), FeOOH, or NiFeO x . While this has generally been attributed to the poor intrinsic catalytic activity of BiVO4, detailed insight into the fate of the photogenerated charge carriers at the surface is still lacking. We used intensity modulated photocurrent spectroscopy (IMPS) to investigate the surface carrier dynamics of bare and CoPi-modified spray-deposited BiVO4 films. Using a model developed by Peter et al., it was possible to distinguish the reaction rate constants for surface recombination and charge transfer to the electrolyte. We found that modification with CoPi reduced the surface recombination of BiVO4 with a factor of 10-20, without significantly influencing the charge transfer kinetics. Control experiments with RuO x , one of the best known OER electrocatalysts, did not affect surface recombination and led to an actual decrease of the photocurrent. These results show that the main role of the CoPi is to passivate the surface of BiVO4 and that, contrary to earlier assumptions, the photocurrent of BiVO4 is limited by surface recombination instead of charge transfer. The importance of surface recombination is well recognized for conventional semiconductors in the field of photovoltaics; these findings show that it may also play a crucial role in oxide-based semiconductors for photoelectrochemical energy conversion.

12.
J Phys Chem B ; 110(28): 13694-9, 2006 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-16836312

RESUMO

Electron transport in dye-sensitized nanocrystalline solar cells appears to be a slow diffusion-controlled process. Values of the apparent electron diffusion coefficient are many orders of magnitude smaller than those reported for bulk anatase. The slow transport of electrons has been attributed to multiple trapping (MT) at energy levels distributed exponentially in the band gap of the nanocrystalline oxide. In the MT model, release of immobile electrons from occupied traps to the conduction band is a thermally activated process, and it might therefore be expected that the apparent electron diffusion coefficient should depend strongly on temperature. In fact, rather small activation energies (0.1-0.25 eV) have been derived from time and frequency resolved measurements of the short circuit photocurrent. It is shown that the MT model can give rise to such anomalously low apparent activation energies as a consequence of the boundary conditions imposed by the short circuit condition and the quasi-static relationship between changes in the densities of free and trapped electrons. This conclusion has been confirmed by exact numerical solutions of the time-dependent generation/collection problem for periodic excitation that provide a good fit to experimental data.

13.
ACS Appl Mater Interfaces ; 8(7): 4600-7, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26771519

RESUMO

Surface oxidation of quantum dots (QDs) is one of the biggest challenges in quantum dot-sensitized solar cells (QDSCs), because it introduces surface states that enhance electron-hole recombination and degrade device performance. Protection of QDs from surface oxidation by passivating the surface with organic or inorganic layers can be one way to overcome this issue. In this study, solid-state QDSCs with a PbS QD absorber layer were prepared from thin mesoporous TiO2 layers by the successive ionic layer adsorption/reaction (SILAR) method. Spiro-OMeTAD was used as the organic p-type hole transporting material (HTM). The effects on the solar cell performance of passivating the surface of the PbS QDs with the tripeptide l-glutathione (GSH) were investigated. Current-voltage characteristics and external quantum efficiency measurements of the solar cell devices showed that GSH-treatment of the QD-sensitized TiO2 electrodes more than doubled the short circuit current and conversion efficiency. Impedance spectroscopy, intensity-modulated photovoltage and photocurrent spectroscopy analysis of the devices revealed that the enhancement in solar cell performance of the GSH-treated cells originates from improved charge injection from PbS QDs into the conduction band of TiO2. Time-resolved photoluminescence decay measurements show that passivation of the surface of QDs with GSH ligands increases the exciton lifetime in the QDs.

14.
J Phys Chem B ; 109(2): 930-6, 2005 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-16866461

RESUMO

The role of the conducting glass substrate (fluorine-doped tin oxide, FTO) in the back reaction of electrons with tri-iodide ions in dye-sensitized nanocrystalline solar cells (DSCs) has been investigated using thin-layer electrochemical cells that are analogues of the DSCs. The rate of back reaction is dependent on the type of FTO and the thermal treatment. The results show that this back-reaction route cannot be neglected in DSCs, particularly at lower light intensities, where it is the dominant route for the back transfer of electrons to tri-iodide. This conclusion is confirmed by measurements of the intensity dependence of the photovoltages of DSCs with and without blocking layers. It follows that blocking layers should be used to prevent the back reaction in mechanistic studies in which the light intensity is varied over a wide range. Conclusions based on studies of the intensity dependence of the parameters of DSCs such as photovoltage and electron lifetime in cells without blocking layers, must be critically re-examined.

15.
ACS Appl Mater Interfaces ; 7(8): 4623-30, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25562687

RESUMO

Nanostructuring has proven to be a successful strategy in overcoming the trade-off between light absorption and hole transport to the solid/electrolyte interface in hematite photoanodes for water splitting. The suggestion that poor electron (majority carrier) collection hinders the performance of nanostructured hematite electrodes has led to the emergence of host-guest architectures in which the absorber layer is deposited onto a transparent high-surface-area electron collector. To date, however, state of the art nanostructured hematite electrodes still outperform their host-guest counterparts, and a quantitative evaluation of the benefits of the host-guest architecture is still lacking. In this paper, we examine the impact of host-guest architectures by comparing nanostructured tin-doped hematite electrodes with hematite nanoparticle layers coated onto two types of conducting macroporous SnO2 scaffolds. Analysis of the external quantum efficiency spectra for substrate (SI) and electrolyte side (EI) illumination reveals that the electron diffusion length in the host-guest electrodes based on an undoped SnO2 scaffold is increased substantially relative to the nanostructured hematite electrode without a supporting scaffold. Nevertheless, electron collection is still incomplete for EI illumination. By contrast, an electron collection efficiency of 100% is achieved by fabricating the scaffold using antimony-doped SnO2, showing that the scaffold conductivity is crucial for the device performance.

16.
Chem Commun (Camb) ; (20): 2368-9, 2002 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-12430444

RESUMO

A modular electrochemical saccharide sensor using ferrocene has been prepared which contains two boronic acid receptor groups and hexamethylene linker.


Assuntos
Carboidratos/análise , Ácidos Borônicos , Reagentes de Ligações Cruzadas , Eletroquímica/métodos , Compostos Ferrosos , Galactose/análise , Glucose/análise , Substâncias Macromoleculares , Metalocenos , Oxirredução
17.
Chem Commun (Camb) ; (10): 1030-1, 2002 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-12122649

RESUMO

CdS quantum dots can be self-assembled on high surface area nanocrystalline TiO2 electrodes; spectroscopic and photoelectrochemical studies indicate that the size, and hence the absorption edge, of the CdS particles can be controlled; efficient photosensitization of the TiO2 electrode by the Q-particles has been achieved.

18.
Faraday Discuss ; 155: 309-22; discussion 349-56, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22470982

RESUMO

The kinetics of light-driven oxygen evolution at polycrystalline alpha-Fe2O3 layers prepared by aerosol-assisted chemical vapour deposition has been studied using intensity modulated photocurrent spectroscopy (IMPS). Analysis of the frequency-dependent IMPS response gives information about the competition between the 4-electron oxidation of water by photogenerated holes and losses due to electron-hole recombination via surface states. The very slow kinetics of oxygen evolution indicates the presence of a kinetic bottleneck in the overall process. Surface treatment of the alpha-Fe2O3 with dilute cobalt nitrate solution leads to a remarkable improvement in the photocurrent response, but contrary to expectation, the results of this study show that this is not due to catalysis of hole transfer but is instead the consequence of almost complete suppression of surface recombination.

19.
Chem Commun (Camb) ; 48(14): 2027-9, 2012 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-22234656

RESUMO

Rate constants for recombination and hole transfer during oxygen evolution at illuminated α-Fe(2)O(3) electrodes were measured by intensity-modulated photocurrent spectroscopy and found to be remarkably low. Treatment of the electrode with a Co(II) solution suppressed surface recombination but did not catalyse hole transfer. Intermediates in the reaction were detected spectroscopically.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA