RESUMO
The control of all our motor outputs requires constant monitoring by proprioceptive sensory neurons (PSNs) that convey continuous muscle sensory inputs to the spinal motor network. Yet the molecular programs that control the establishment of this sensorimotor circuit remain largely unknown. The transcription factor RUNX3 is essential for the early steps of PSNs differentiation, making it difficult to study its role during later aspects of PSNs specification. Here, we conditionally inactivate Runx3 in PSNs after peripheral innervation and identify that RUNX3 is necessary for maintenance of cell identity of only a subgroup of PSNs, without discernable cell death. RUNX3 also controls the sensorimotor connection between PSNs and motor neurons at limb level, with muscle-by-muscle variable sensitivities to the loss of Runx3 that correlate with levels of RUNX3 in PSNs. Finally, we find that muscles and neurotrophin 3 signaling are necessary for maintenance of RUNX3 expression in PSNs. Hence, a transcriptional regulator that is crucial for specifying a generic PSN type identity after neurogenesis is later regulated by target muscle-derived signals to contribute to the specialized aspects of the sensorimotor connection selectivity.
Assuntos
Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Células Cultivadas , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Feminino , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Neurônios Motores/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Células Receptoras Sensoriais/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
Different types of spiral ganglion neurons (SGNs) are essential for auditory perception by transmitting complex auditory information from hair cells (HCs) to the brain. Here, we use deep, single cell transcriptomics to study the molecular mechanisms that govern their identity and organization in mice. We identify a core set of temporally patterned genes and gene regulatory networks that may contribute to the diversification of SGNs through sequential binary decisions and demonstrate a role for NEUROD1 in driving specification of a Ic-SGN phenotype. We also find that each trajectory of the decision tree is defined by initial co-expression of alternative subtype molecular controls followed by gradual shifts toward cell fate resolution. Finally, analysis of both developing SGN and HC types reveals cell-cell signaling potentially playing a role in the differentiation of SGNs. Our results indicate that SGN identities are drafted prior to birth and reveal molecular principles that shape their differentiation and will facilitate studies of their development, physiology, and dysfunction.
Assuntos
Neurônios , Gânglio Espiral da Cóclea , Animais , Diferenciação Celular/genética , Células Ciliadas Auditivas/metabolismo , Camundongos , Neurônios/metabolismo , RNA/metabolismoRESUMO
Proprioceptive neurons (PNs) are essential for the proper execution of all our movements by providing muscle sensory feedback to the central motor network. Here, using deep single cell RNAseq of adult PNs coupled with virus and genetic tracings, we molecularly identify three main types of PNs (Ia, Ib and II) and find that they segregate into eight distinct subgroups. Our data unveil a highly sophisticated organization of PNs into discrete sensory input channels with distinct spatial distribution, innervation patterns and molecular profiles. Altogether, these features contribute to finely regulate proprioception during complex motor behavior. Moreover, while Ib- and II-PN subtypes are specified around birth, Ia-PN subtypes diversify later in life along with increased motor activity. We also show Ia-PNs plasticity following exercise training, suggesting Ia-PNs are important players in adaptive proprioceptive function in adult mice.
Assuntos
Retroalimentação Sensorial/fisiologia , Gânglios Espinais/metabolismo , Neurônios Motores/metabolismo , Propriocepção/fisiologia , Células Receptoras Sensoriais/metabolismo , Animais , Calbindina 1/genética , Calbindina 1/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Correpressoras/genética , Proteínas Correpressoras/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Gânglios Espinais/citologia , Expressão Gênica , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios Motores/classificação , Neurônios Motores/citologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Condicionamento Físico Animal , Células Receptoras Sensoriais/classificação , Células Receptoras Sensoriais/citologia , Análise de Célula Única , Medula Espinal/citologia , Medula Espinal/metabolismoRESUMO
Somatic sensation is defined by the existence of a diversity of primary sensory neurons with unique biological features and response profiles to external and internal stimuli. However, there is no coherent picture about how this diversity of cell states is transcriptionally generated. Here, we use deep single cell analysis to resolve fate splits and molecular biasing processes during sensory neurogenesis in mice. Our results identify a complex series of successive and specific transcriptional changes in post-mitotic neurons that delineate hierarchical regulatory states leading to the generation of the main sensory neuron classes. In addition, our analysis identifies previously undetected early gene modules expressed long before fate determination although being clearly associated with defined sensory subtypes. Overall, the early diversity of sensory neurons is generated through successive bi-potential intermediates in which synchronization of relevant gene modules and concurrent repression of competing fate programs precede cell fate stabilization and final commitment.
Assuntos
Neurogênese/genética , Células Receptoras Sensoriais/citologia , Células Receptoras Sensoriais/fisiologia , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Animais , Diferenciação Celular , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/fisiologia , Células-TroncoRESUMO
Developmental cell death plays an important role in the construction of functional neural circuits. In vertebrates, the canonical view proposes a selection of the surviving neurons through stochastic competition for target-derived neurotrophic signals, implying an equal potential for neurons to compete. Here we show an alternative cell fitness selection of neurons that is defined by a specific neuronal heterogeneity code. Proprioceptive sensory neurons that will undergo cell death and those that will survive exhibit different molecular signatures that are regulated by retinoic acid and transcription factors, and are independent of the target and neurotrophins. These molecular features are genetically encoded, representing two distinct subgroups of neurons with contrasted functional maturation states and survival outcome. Thus, in this model, a heterogeneous code of intrinsic cell fitness in neighboring neurons provides differential competitive advantage resulting in the selection of cells with higher capacity to survive and functionally integrate into neural networks.
Assuntos
Modelos Biológicos , Células Receptoras Sensoriais/citologia , Animais , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Embrião de Galinha , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Camundongos Endogâmicos C57BL , Propriocepção/efeitos dos fármacos , Receptor trkC/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Tretinoína/farmacologiaRESUMO
The sensation of pain is essential for the preservation of the functional integrity of the body. However, the key molecular regulators necessary for the initiation of the development of pain-sensing neurons have remained largely unknown. Here, we report that, in mice, inactivation of the transcriptional regulator PRDM12, which is essential for pain perception in humans, results in a complete absence of the nociceptive lineage, while proprioceptive and touch-sensitive neurons remain. Mechanistically, our data reveal that PRDM12 is required for initiation of neurogenesis and activation of a cascade of downstream pro-neuronal transcription factors, including NEUROD1, BRN3A, and ISL1, in the nociceptive lineage while it represses alternative fates other than nociceptors in progenitor cells. Our results thus demonstrate that PRDM12 is necessary for the generation of the entire lineage of pain-initiating neurons.
Assuntos
Proteínas de Transporte/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Neurogênese/fisiologia , Neurônios/fisiologia , Nociceptores/fisiologia , Animais , Proteínas de Transporte/genética , Linhagem da Célula , Galinhas , Feminino , Perfilação da Expressão Gênica , Imuno-Histoquímica , Masculino , Camundongos , Proteínas do Tecido Nervoso/genética , Neurogênese/genética , Nociceptividade/fisiologia , Fatores de Transcrição/metabolismoRESUMO
Spiral ganglion (SG) neurons of the cochlea convey all auditory inputs to the brain, yet the cellular and molecular complexity necessary to decode the various acoustic features in the SG has remained unresolved. Using single-cell RNA sequencing, we identify four types of SG neurons, including three novel subclasses of type I neurons and the type II neurons, and provide a comprehensive genetic framework that define their potential synaptic communication patterns. The connectivity patterns of the three subclasses of type I neurons with inner hair cells and their electrophysiological profiles suggest that they represent the intensity-coding properties of auditory afferents. Moreover, neuron type specification is already established at birth, indicating a neuronal diversification process independent of neuronal activity. Thus, this work provides a transcriptional catalog of neuron types in the cochlea, which serves as a valuable resource for dissecting cell-type-specific functions of dedicated afferents in auditory perception and in hearing disorders.