Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mov Disord ; 36(6): 1342-1352, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33200489

RESUMO

BACKGROUND: Pantothenate kinase-associated neurodegeneration (PKAN) currently has no approved treatments. OBJECTIVES: The Fosmetpantotenate Replacement Therapy pivotal trial examined whether treatment with fosmetpantotenate improves PKAN symptoms and stabilizes disease progression. METHODS: This randomized, double-blind, placebo-controlled, multicenter study evaluated fosmetpantotenate, 300 mg oral dose three times daily, versus placebo over a 24-week double-blind period. Patients with pathogenic variants of PANK2, aged 6 to 65 years, with a score ≥6 on the PKAN-Activities of Daily Living (PKAN-ADL) scale were enrolled. Patients were randomized to active (fosmetpantotenate) or placebo treatment, stratified by weight and age. The primary efficacy endpoint was change from baseline at week 24 in PKAN-ADL. RESULTS: Between July 23, 2017, and December 18, 2018, 84 patients were randomized (fosmetpantotenate: n = 41; placebo: n = 43); all 84 patients were included in the analyses. Six patients in the placebo group discontinued treatment; two had worsening dystonia, two had poor compliance, and two died of PKAN-related complications (aspiration during feeding and disease progression with respiratory failure, respectively). Fosmetpantotenate and placebo group PKAN-ADL mean (standard deviation) scores were 28.2 (11.4) and 27.4 (11.5) at baseline, respectively, and were 26.9 (12.5) and 24.5 (11.8) at week 24, respectively. The difference in least square mean (95% confidence interval) at week 24 between fosmetpantotenate and placebo was -0.09 (-1.69 to 1.51; P = 0.9115). The overall incidence of treatment-emergent serious adverse events was similar in the fosmetpantotenate (8/41; 19.5%) and placebo (6/43; 14.0%) groups. CONCLUSIONS: Treatment with fosmetpantotenate was safe but did not improve function assessed by the PKAN-ADL in patients with PKAN. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Neurodegeneração Associada a Pantotenato-Quinase , Atividades Cotidianas , Método Duplo-Cego , Humanos , Neurodegeneração Associada a Pantotenato-Quinase/tratamento farmacológico , Neurodegeneração Associada a Pantotenato-Quinase/genética , Ácido Pantotênico/análogos & derivados
2.
BMC Pediatr ; 21(1): 19, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33407269

RESUMO

BACKGROUND: Current nutritional management of infants born very preterm results in significant deficiency of the essential fatty acids (FAs) arachidonic acid (ARA) and docosahexaenoic acid (DHA). The impact of this deficit on brain maturation and inflammation mediated neonatal morbidities are unknown. The aim of this study is to determine whether early supply of ARA and DHA improves brain maturation and neonatal outcomes in infants born before 29 weeks of gestation. METHODS: Infants born at Oslo University Hospital are eligible to participate in this double-blind randomized controlled trial. Study participants are randomized to receive an enteral FA supplement of either 0.4 ml/kg MCT-oil™ (medium chain triglycerides) or 0.4 ml/kg Formulaid™ (100 mg/kg of ARA and 50 mg/kg of DHA). The FA supplement is given from the second day of life to 36 weeks' postmenstrual age (PMA). The primary outcome is brain maturation assessed by Magnetic Resonance Imaging (MRI) at term equivalent age. Secondary outcomes include quality of growth, incidence of neonatal morbidities, cardiovascular health and neuro-development. Target sample size is 120 infants (60 per group), this will provide 80% power to detect a 0.04 difference in mean diffusivity (MD, mm2/sec) in major white matter tracts on MRI. DISCUSSION: Supplementation of ARA and DHA has the potential to improve brain maturation and reduce inflammation related diseases. This study is expected to provide valuable information for future nutritional guidelines for preterm infants. TRIAL REGISTRATION: Clinicaltrials.gov ID: NCT03555019 . Registered 4 October 2018- Retrospectively registered.


Assuntos
Recém-Nascido Prematuro , Terapia Nutricional , Ácido Araquidônico , Ácidos Docosa-Hexaenoicos , Método Duplo-Cego , Humanos , Lactente , Recém-Nascido , Inflamação , Ensaios Clínicos Controlados Aleatórios como Assunto
3.
Acta Paediatr ; 110(12): 3153-3160, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33848371

RESUMO

Pediatric acute-onset neuropsychiatric syndrome is a clinical concept used to describe a subgroup of children with sudden onset of psychiatric and somatic symptoms. The diagnostic term and especially management of children differs depending on the clinical setting to which they present, and the diagnosis and management is controversial. The aim of this paper is to propose a clinical guidance including homogenous diagnostic work-up and management of paediatric acute onset neuropsychiatric syndrome within the Nordic countries. The guidance is authored by a Nordic-UK working group consisting of paediatric neurologist, child psychiatrists and psychologists from Denmark, Norway, Sweden and Great Britain, and is the result of broad consensus. CONCLUSION: Consensus was achieved in the collaboration on work-up and treatment of patients with paediatric acute-onset neuropsychiatric syndrome, which we hope will improve and homogenise patient care and enable future collaborative research in the field.


Assuntos
Doenças Autoimunes , Transtorno Obsessivo-Compulsivo , Criança , Humanos , Países Escandinavos e Nórdicos , Suécia
4.
Radiographics ; 40(5): 1395-1411, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32735475

RESUMO

Neuroimmune disorders in children are a complex group of inflammatory conditions of the central nervous system with diverse pathophysiologic mechanisms and clinical manifestations. Improvements in antibody analysis, genetics, neuroradiology, and different clinical phenotyping have expanded knowledge of the different neuroimmune disorders. The authors focus on pediatric-onset myelin oligodendrocyte glycoprotein (MOG) antibody-associated disease, which is a new entity in the spectrum of inflammatory demyelinating diseases, distinct from both multiple sclerosis (MS) and anti-aquaporin-4 (AQP4) antibody neuromyelitis optica spectrum disorders (NMOSDs). The authors review the importance of an optimized antibody-detection assay, the frequency of MOG antibodies in children with acquired demyelinating syndrome (ADS), the disease course, the clinical spectrum, proposed diagnostic criteria, and neuroimaging of MOG antibody-associated disease. Also, they outline differential diagnosis from other neuroimmune disorders in children according to the putative primary immune mechanism. Finally, they recommend a diagnostic algorithm for the first manifestation of ADS or relapsing ADS that leads to four demyelinating syndromes: MOG antibody-associated disease, AQP4 antibody NMOSDs, MS, and seronegative relapsing ADS. This diagnostic approach provides a framework for the strategic role of neuroradiology in diagnosis of ADS and decision making, to optimize patient care and treatment outcome in concert with clinicians. Online supplemental material is available for this article. ©RSNA, 2020.


Assuntos
Doenças Autoimunes do Sistema Nervoso/diagnóstico por imagem , Imagem Molecular/métodos , Neuroimagem/métodos , Doenças Autoimunes do Sistema Nervoso/terapia , Criança , Diagnóstico Diferencial , Humanos
7.
Clin Nutr ; 43(1): 176-186, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38061271

RESUMO

BACKGROUND: Arachidonic acid (ARA) and docosahexaenoic acid (DHA) are important structural components of neural cellular membranes and possess anti-inflammatory properties. Very preterm infants are deprived of the enhanced placental supply of these fatty acids, but the benefit of postnatal supplementation on brain development is uncertain. The aim of this study was to test the hypothesis that early enteral supplementation with ARA and DHA in preterm infants improves white matter (WM) microstructure assessed by diffusion-weighted MRI at term equivalent age. METHODS: In this double-blind, randomized controlled trial, infants born before 29 weeks gestational age were allocated to either 100 mg/kg ARA and 50 mg/kg DHA (ARA:DHA group) or medium chain triglycerides (control). Supplements were started on the second day of life and provided until 36 weeks postmenstrual age. The primary outcome was brain maturation assessed by diffusion tensor imaging (DTI) using Tract-Based Spatial Statistics (TBSS) analysis. RESULTS: We included 120 infants (60 per group) in the trial; mean (range) gestational age was 26+3 (22+6 - 28+6) weeks and postmenstrual age at scan was 41+3 (39+1 - 47+0) weeks. Ninety-two infants underwent MRI imaging, and of these, 90 had successful T1/T2 weighted MR images and 74 had DTI data of acceptable quality. TBSS did not show significant differences in mean or axial diffusivity between the groups, but demonstrated significantly higher fractional anisotropy in several large WM tracts in the ARA:DHA group, including corpus callosum, the anterior and posterior limb of the internal capsula, inferior occipitofrontal fasciculus, uncinate fasciculus, and the inferior longitudinal fasciculus. Radial diffusivity was also significantly lower in several of the same WM tracts in the ARA:DHA group. CONCLUSION: This study suggests that supplementation with ARA and DHA at doses matching estimated fetal accretion rates improves WM maturation compared to control treatment, but further studies are needed to ascertain any functional benefit. CLINICAL TRIAL REGISTRATION: www. CLINICALTRIALS: gov; ID:NCT03555019.


Assuntos
Recém-Nascido Prematuro , Substância Branca , Gravidez , Lactente , Recém-Nascido , Humanos , Feminino , Ácidos Docosa-Hexaenoicos , Imagem de Tensor de Difusão/métodos , Placenta , Substância Branca/diagnóstico por imagem , Suplementos Nutricionais , Ácido Araquidônico , Encéfalo/diagnóstico por imagem
8.
Pediatr Neurol ; 143: 68-76, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37018879

RESUMO

BACKGROUND: Kearns-Sayre syndrome (KSS) is caused by duplications and/or deletions of mitochondrial DNA (mtDNA) and is typically diagnosed based on a classic triad of symptoms with chronic progressive external ophthalmoplegia (CPEO), retinitis pigmentosa, and onset before age 20 years. The present study aimed to diagnose two patients, on suspicion of KSS. METHODS: One of the patients went through a diagnostic odyssey, with normal results from several mtDNA analyses, both in blood and muscle, before the diagnosis was confirmed genetically. RESULTS: Two patients presented increased tau protein and low 5-methyltetrahydrofolate (5-MTHF) levels in the cerebrospinal fluid (CSF). Untargeted metabolomics on CSF samples also showed an increase in the levels of free sialic acid and sphingomyelin C16:0 (d18:1/C16:0), compared with four control groups (patients with mitochondrial disorders, nonmitochondrial disorders, low 5-MTHF, or increased tau proteins). CONCLUSIONS: It is the first time that elevated sphingomyelin C16:0 (d18:1/C16:0) and tau protein in KSS are reported. Using an untargeted metabolomics approach and standard laboratory methods, the study could shed new light on metabolism in KSS to better understand its complexity. In addition, the findings may suggest the combination of elevated free sialic acid, sphingomyelin C16:0 (d18:1/C16:0), and tau protein as well as low 5-MTHF as new biomarkers in the diagnostics of KSS.


Assuntos
Síndrome de Kearns-Sayre , Humanos , Adulto Jovem , Adulto , Síndrome de Kearns-Sayre/diagnóstico , Síndrome de Kearns-Sayre/genética , Proteínas tau , Ácido N-Acetilneuramínico , Esfingomielinas , DNA Mitocondrial/genética
9.
Front Neurol ; 14: 1098454, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36970548

RESUMO

Substantial challenges in study design and methodology exist during clinical trial development to examine treatment response in patients with a rare disease, especially those with predominant central nervous system involvement and heterogeneity in clinical manifestations and natural history. Here we discuss crucial decisions which may significantly impact success of the study, including patient selection and recruitment, identification and selection of endpoints, determination of the study duration, consideration of control groups including natural history controls, and selection of appropriate statistical analyses. We review strategies for the successful development of a clinical trial to evaluate treatment of a rare disease with a focus on inborn errors of metabolism (IEMs) that present with movement disorders. The strategies presented using pantothenate kinase-associated neurodegeneration (PKAN) as the rare disease example can be applied to other rare diseases, particularly IEMs with movement disorders (e.g., other neurodegeneration with brain iron accumulation disorders, lysosomal storage disorders). The significant challenges associated with designing a clinical trial in rare disease can sometimes be successfully met through strategic engagement with experts in the rare disease, seeking regulatory and biostatistical guidance, and early involvement of patients and families. In addition to these strategies, we discuss the urgent need for a paradigm shift within the regulatory processes to help accelerate medical product development and bring new innovations and advances to patients with rare neurodegenerative diseases who need them earlier in disease progression and prior to clinical manifestations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA