Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Ecol Indic ; 94: 185-197, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30393465

RESUMO

The European Water Framework Directive has been adopted by Member States to assess and manage the ecological integrity of surface waters. Specific challenges include harmonizing diverse assessment systems across Europe, linking ecological assessment to restoration measures and reaching a common view on 'good' ecological status. In this study, nine national macrophyte-based approaches for assessing ecological status were compared and harmonized, using a large dataset of 539 European lakes. A macrophyte common metric, representing the average standardized view of each lake by all countries, was used to compare national methods. This was also shown to reflect the total phosphorus (r2 = 0.32), total nitrogen (r2 = 0.22) as well as chlorophyll-a (r2 = 0.35-0.38) gradients, providing a link between ecological data, stressors and management decisions. Despite differing assessment approaches and initial differences in classification, a consensus was reached on how type-specific macrophyte assemblages change across the ecological status gradient and where ecological status boundaries should lie. A marked decline in submerged vegetation, especially Charophyta (characterizing 'good' status), and an increase in abundance of free-floating plants (characterizing 'less than good' status) were the most significant changes along the ecological status gradient. Macrophyte communities of 'good' status lakes were diverse with many charophytes and several Potamogeton species. A large number of taxa occurred across the entire gradient, but only a minority dominated at 'less than good' status, including filamentous algae, lemnids, nymphaeids, and several elodeids (e.g., Zannichellia palustris and Elodea nuttallii). Our findings establish a 'guiding image' of the macrophyte community at 'good' ecological status in hard-water lakes of the Central-Baltic region of Europe.

2.
Sci Total Environ ; 912: 168872, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38013099

RESUMO

Defining nutrient thresholds that protect and support the ecological integrity of aquatic ecosystems is a fundamental step in maintaining their natural biodiversity and preserving their resilience. With increasing catchment pressures and climate change, it is more important than ever to develop clear methods to establish thresholds for status classification and management of waters. This must often be achieved using complex data and should be robust to interference from additional pressures as well as ameliorating or confounding conditions. We use both artificial and real data to examine challenges in setting nutrient thresholds in unbalanced and skewed data. We found significant advantages to using binary logistic regression over other techniques. However, one of the key challenges is objectively selecting a probability from which to derive the nutrient threshold. For this purpose, the examination of the proportions of matching and mismatching status classifications of nutrients and a biological quality element using a confusion matrix is a key step that should be more widely adopted in threshold selection. We examined a large array of statistical measures of classification accuracy and their performance over combinations of skewness and imbalance in the data. The most appropriate threshold probability is a compromise between maximising overall classification accuracy and reducing mismatches expressed as commission (false positives) without excessive omission (false negatives). An application to a lake type indicated total phosphorus thresholds that would be around 50 µg l-1 lower than the threshold achieved by an 'unguided' approach, indicating that this approach is a very significant development meriting attention from national authorities responsible for water management.


Assuntos
Ecossistema , Lagos , Biodiversidade , Água , Nutrientes , Fósforo
3.
Sci Total Environ ; 813: 151898, 2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-34838557

RESUMO

Eutrophication caused by an excessive presence of nutrients is affecting large portions of European waters with more than 60% of the surface water bodies failing to achieve the primary ambition of water management in Europe, that of good ecological status (GES) with diffuse emission from agriculture being the second most important pressure affecting surface waters. We developed EU wide and regional nutrient targets that define the boundary concentrations between good and moderate status for river and lake total P (TP) and total N (TN) and assessed the gap between actual nutrient concentrations and these targets and considered strategies of nutrient reductions necessary to achieve GES and deliver ecosystem services. The nutrient targets established for rivers ranged from 0.5-3.5 mg/L TN and 11-105 µg/L TP and for lakes 0.5-1.8 mg/L TN and 10-60 µg/L TP. Based on the EU wide targets, 59% of the TN and 57% of the TP river monitoring sites and 64% of the TN and 61% of the TP lake monitoring sites exceed these value and are thus at less than GES. The PCA and step-wise regression for EU basins clearly showed that the basin nutrient export is predominantly related to agricultural inputs. In addition, the step-wise regression models for TN and TP provided the ability to extrapolate the results and quantify the input reductions necessary for reaching the nutrient targets at the EU level. The results suggest that a dual water management strategy would be beneficial and should focus a) on those less polluted rivers and lakes that can easily attain the GES goal and b) on the more highly polluted systems that will improve the delivery of ecosystem services.


Assuntos
Lagos , Poluentes Químicos da Água , China , Ecossistema , Monitoramento Ambiental , Eutrofização , Nitrogênio/análise , Nutrientes , Fósforo/análise , Rios , Água , Poluentes Químicos da Água/análise
4.
Sci Total Environ ; 807(Pt 3): 150977, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34656586

RESUMO

One key component of any eutrophication management strategy is establishment of realistic thresholds above which negative impacts become significant and provision of ecosystem services is threatened. This paper introduces a toolkit of statistical approaches with which such thresholds can be set, explaining their rationale and situations under which each is effective. All methods assume a causal relationship between nutrients and biota, but we also recognise that nutrients rarely act in isolation. Many of the simpler methods have limited applicability when other stressors are present. Where relationships between nutrients and biota are strong, regression is recommended. Regression relationships can be extended to include additional stressors or variables responsible for variation between water bodies. However, when the relationship between nutrients and biota is weaker, categorical approaches are recommended. Of these, binomial regression and an approach based on classification mismatch are most effective although both will underestimate threshold concentrations if a second stressor is present. Whilst approaches such as changepoint analysis are not particularly useful for meeting the specific needs of EU legislation, other multivariate approaches (e.g. decision trees) may have a role to play. When other stressors are present quantile regression allows thresholds to be established which set limits above which nutrients are likely to influence the biota, irrespective of other pressures. The statistical methods in the toolkit may be useful as part of a management strategy, but more sophisticated approaches, often generating thresholds appropriate to individual water bodies rather than to broadly defined "types", are likely to be necessary too. The importance of understanding underlying ecological processes as well as correct selection and application of methods is emphasised, along with the need to consider local regulatory and decision-making systems, and the ease with which outcomes can be communicated to non-technical audiences.


Assuntos
Ecossistema , Eutrofização , Nutrientes
5.
Sci Total Environ ; 827: 154242, 2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35245557

RESUMO

Nutrient targets based on pressure-response models are essential for defining ambitions and managing eutrophication. However, the scale of biogeographical variation in these pressure-response relationships is poorly understood, which may hinder eutrophication management in regions where lake ecology is less intensively studied. In this study, we derive ecology-based nutrient targets for five major ecoregions of Europe: Northern, Central-Baltic, Alpine, Mediterranean and Eastern Continental. As a first step, we developed regressions between nutrient concentrations and ecological quality ratios (EQR) based on phytoplankton and macrophyte communities. Significant relationships were established for 13 major lake types; in most cases, these relationships were stronger for phosphorus than for nitrogen, and stronger for phytoplankton than for macrophytes. Using these regressions, we estimated the total phosphorus (TP) and total nitrogen (TN) concentrations at which lakes of different types are likely to achieve good ecological status. However, in the very shallow lakes of the Eastern Continental region, relations between nutrient and biological communities were weak or non-significant. This can be attributed to high nutrient concentrations (in the asymptotic zone of phosphorus-phytoplankton models) suggesting other factors (light, grazing) limit primary production. However, we also show that fish stocking is a major pressure on Eastern Continental lakes, negatively affecting ecological status: lakes with low fish stocking show low chlorophyll-a concentrations and good ecological status despite high nutrient levels, while the lakes with high fish stocking show high chlorophyll-a and low ecological status. This study highlights the need to better understand lakes in biogeographic regions that have been, for historical reasons, less studied. This, in turn, helps reveal factors that challenge the dominant paradigms of lake assessment and management.


Assuntos
Monitoramento Ambiental , Lagos , China , Clorofila , Eutrofização , Nitrogênio/análise , Nutrientes , Fósforo/análise , Fitoplâncton
6.
Environ Manage ; 45(6): 1286-98, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20401659

RESUMO

The concept of "reference conditions" describes the benchmark against which current conditions are compared when assessing the status of water bodies. In this paper we focus on the establishment of reference conditions for European lakes according to a phytoplankton biomass indicator--the concentration of chlorophyll-a. A mostly spatial approach (selection of existing lakes with no or minor human impact) was used to set the reference conditions for chlorophyll-a values, supplemented by historical data, paleolimnological investigations and modelling. The work resulted in definition of reference conditions and the boundary between "high" and "good" status for 15 main lake types and five ecoregions of Europe: Alpine, Atlantic, Central/Baltic, Mediterranean, and Northern. Additionally, empirical models were developed for estimating site-specific reference chlorophyll-a concentrations from a set of potential predictor variables. The results were recently formulated into the EU legislation, marking the first attempt in international water policy to move from chemical quality standards to ecological quality targets.


Assuntos
Clorofila , Água Doce , Monitoramento Ambiental/métodos , Europa (Continente) , Eutrofização , Fitoplâncton , Valores de Referência
7.
Nat Ecol Evol ; 4(8): 1060-1068, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32541802

RESUMO

Climate and land-use change drive a suite of stressors that shape ecosystems and interact to yield complex ecological responses (that is, additive, antagonistic and synergistic effects). We know little about the spatial scales relevant for the outcomes of such interactions and little about effect sizes. These knowledge gaps need to be filled to underpin future land management decisions or climate mitigation interventions for protecting and restoring freshwater ecosystems. This study combines data across scales from 33 mesocosm experiments with those from 14 river basins and 22 cross-basin studies in Europe, producing 174 combinations of paired-stressor effects on a biological response variable. Generalized linear models showed that only one of the two stressors had a significant effect in 39% of the analysed cases, 28% of the paired-stressor combinations resulted in additive effects and 33% resulted in interactive (antagonistic, synergistic, opposing or reversal) effects. For lakes, the frequencies of additive and interactive effects were similar for all spatial scales addressed, while for rivers these frequencies increased with scale. Nutrient enrichment was the overriding stressor for lakes, with effects generally exceeding those of secondary stressors. For rivers, the effects of nutrient enrichment were dependent on the specific stressor combination and biological response variable. These results vindicate the traditional focus of lake restoration and management on nutrient stress, while highlighting that river management requires more bespoke management solutions.


Assuntos
Ecossistema , Água Doce , Biota , Europa (Continente) , Rios
9.
Sci Total Environ ; 650(Pt 2): 2074-2084, 2019 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-30290349

RESUMO

European water policy has identified eutrophication as a priority issue for water management. Substantial progress has been made in combating eutrophication but open issues remain, including setting reliable and meaningful nutrient criteria supporting 'good' ecological status of the Water Framework Directive. The paper introduces a novel methodological approach - a set of four different methods - that can be applied to different ecosystems and stressors to derive empirically-based management targets. The methods include Ranged Major Axis (RMA) regression, multivariate Ordinary Least Squares (OLS) regression, logistic regression, and minimising the mismatch of classifications. We apply these approaches to establish nutrient (nitrogen and phosphorus) criteria for the major productive shallow lake types of Europe: high alkalinity shallow (LCB1; mean depth 3-15 m) and very shallow (LCB2; mean depth < 3 m) lakes. Univariate relationships between nutrients and macrophyte assessments explained 29-46% of the variation. Multivariate models with both total phosphorus (TP) and total nitrogen (TN) as predictors had higher R2 values (0.50 for LCB1 and 0.49 for LCB2) relative to the use of TN or TP singly. We estimated nutrient concentrations at the boundary where lake vegetation changes from 'good' to 'moderate' ecological status. LCB1 lakes achieved 'good' macrophyte status at concentrations below 48-53 µg/l TP and 1.1-1.2 mg/l TN, compared to LCB2 lakes below 58-78 µg/l TP and 1.0-1.4 mg/l TN. Where strong regression relationships exist, regression approaches offer a reliable basis for deriving nutrient criteria and their uncertainty, while categorical approaches offer advantages for risk assessment and communication, or where analysis is constrained by discontinuous measures of status or short stressor gradients. We link ecological status of macrophyte communities to nutrient criteria in a user-friendly and transparent way. Such analyses underpin the practical actions and policy needed to achieve 'good' ecological status in the lakes of Europe.


Assuntos
Monitoramento Ambiental/métodos , Lagos/química , Nitrogênio/metabolismo , Fósforo/metabolismo , Plantas/metabolismo , Organismos Aquáticos/metabolismo , Europa (Continente) , Eutrofização , Modelos Biológicos
10.
Sci Total Environ ; 684: 425-433, 2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31154215

RESUMO

Various methods have been proposed to identify threshold concentrations of nutrients that would support good ecological status, but the performance of these methods and the influence of other stressors on the underlying models have not been fully evaluated. We used synthetic datasets to compare the performance of ordinary least squares, logistic and quantile regression, as well as, categorical methods based on the distribution of nutrient concentrations categorised by biological status. The synthetic datasets used differed in their levels of variation between explanatory and response variables, and were centered at different positions along the stressor (nutrient) gradient. In order to evaluate the performance of methods in "multiple stressor" situations, another set of datasets with two stressors was used. Ordinary least squares and logistic regression methods were the most reliable when predicting the threshold concentration when nutrients were the sole stressor; however, both had a tendency to underestimate the threshold when a second stressor was present. In contrast, threshold concentrations produced by categorical methods were strongly influenced by the level of the stressor (nutrient enrichment, in this case) relative to the threshold they were trying to predict (good/moderate in this instance). Although all the methods tested had limitations in the presence of a second stressor, upper quantiles seemed generally appropriate to establish non-precautionary thresholds. For example, upper quantiles may be appropriate when establishing targets for restoration, but not when seeking to minimise deterioration. Selection of an appropriate threshold concentration should also attend to the regulatory regime (i.e. policy requirements and environmental management context) within which it will be used, and the ease of communicating the principles to managers and stakeholders.

11.
Sci Total Environ ; 695: 133888, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31756856

RESUMO

The aim of European water policy is to achieve good ecological status in all rivers, lakes, coastal and transitional waters by 2027. Currently, more than half of water bodies are in a degraded condition and nutrient enrichment is one of the main culprits. Therefore, there is a pressing need to establish reliable and comparable nutrient criteria that are consistent with good ecological status. This paper highlights the wide range of nutrient criteria currently in use by Member States of the European Union to support good ecological status and goes on to suggest that inappropriate criteria may be hindering the achievement of good status. Along with a comprehensive overview of nutrient criteria, we provide a critical analysis of the threshold concentrations and approaches by which these are set. We identify four essential issues: (1) Different nutrients (nitrogen and/or phosphorus) are used for different water categories in different countries. (2) The use of different nutrient fractions (total, dissolved inorganic) and statistical summary metrics (e.g., mean, percentiles, seasonal, annual) currently hampers comparability between countries, particularly for rivers, transitional and coastal waters. (3) Wide ranges in nutrient threshold values within shared water body types, in some cases showing more than a 10-fold difference in concentrations. (4) Different approaches used to set threshold nutrient concentrations to define the boundary between "good" and "moderate" ecological status. Expert judgement-based methods resulted in significantly higher (less stringent) good-moderate threshold values compared with data-driven approaches, highlighting the importance of consistent and rigorous approaches to criteria setting. We suggest that further development of nutrient criteria should be based on relationships between ecological status and nutrient concentrations, taking into account the need for comparability between different water categories, water body types within these categories, and countries.

12.
Sci Total Environ ; 697: 134043, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-32380597

RESUMO

European countries have defined >1000 national river types and >400 national lake types to implement the EU Water Framework Directive (WFD). In addition, common river and lake types have been defined within regions of Europe for intercalibrating the national classification systems for ecological status of water bodies. However, only a low proportion of national types correspond to these common intercalibration types. This causes uncertainty concerning whether the classification of ecological status is consistent across countries. Therefore, through an extensive dialogue with and data provision from all EU countries, we have developed a generic typology for European rivers and lakes. This new broad typology reflects the natural variability in the most commonly used environmental type descriptors: altitude, size and geology, as well as mean depth for lakes. These broad types capture 60-70% of all national WFD types including almost 80% of all European river and lake water bodies in almost all EU countries and can also be linked to all the common intercalibration types. The typology provides a new framework for large-scale assessments across country borders, as demonstrated with an assessment of ecological status and pressures based on European data from the 2nd set of river basin management plans. The typology can also be used for a variety of other large-scale assessments, such as reviewing and linking the water body types to habitat types under the Habitats Directive and the European Nature Information System (EUNIS), as well as comparing type-specific limit values for nutrients and other supporting quality elements across countries. Thus, the broad typology can build the basis for all scientific outputs of managerial relevance related to water body types.

13.
Front Plant Sci ; 9: 194, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29515607

RESUMO

Submerged macrophytes play a key role in north temperate shallow lakes by stabilizing clear-water conditions. Eutrophication has resulted in macrophyte loss and shifts to turbid conditions in many lakes. Considerable efforts have been devoted to shallow lake restoration in many countries, but long-term success depends on a stable recovery of submerged macrophytes. However, recovery patterns vary widely and remain to be fully understood. We hypothesize that reduced external nutrient loading leads to an intermediate recovery state with clear spring and turbid summer conditions similar to the pattern described for eutrophication. In contrast, lake internal restoration measures can result in transient clear-water conditions both in spring and summer and reversals to turbid conditions. Furthermore, we hypothesize that these contrasting restoration measures result in different macrophyte species composition, with added implications for seasonal dynamics due to differences in plant traits. To test these hypotheses, we analyzed data on water quality and submerged macrophytes from 49 north temperate shallow lakes that were in a turbid state and subjected to restoration measures. To study the dynamics of macrophytes during nutrient load reduction, we adapted the ecosystem model PCLake. Our survey and model simulations revealed the existence of an intermediate recovery state upon reduced external nutrient loading, characterized by spring clear-water phases and turbid summers, whereas internal lake restoration measures often resulted in clear-water conditions in spring and summer with returns to turbid conditions after some years. External and internal lake restoration measures resulted in different macrophyte communities. The intermediate recovery state following reduced nutrient loading is characterized by a few macrophyte species (mainly pondweeds) that can resist wave action allowing survival in shallow areas, germinate early in spring, have energy-rich vegetative propagules facilitating rapid initial growth and that can complete their life cycle by early summer. Later in the growing season these plants are, according to our simulations, outcompeted by periphyton, leading to late-summer phytoplankton blooms. Internal lake restoration measures often coincide with a rapid but transient colonization by hornworts, waterweeds or charophytes. Stable clear-water conditions and a diverse macrophyte flora only occurred decades after external nutrient load reduction or when measures were combined.

14.
Sci Total Environ ; 344(1-3): 259-73, 2005 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-15907521

RESUMO

A three-tiered, hierarchical, risk-based prioritisation system was developed to assess the number of standing waters in Great Britain (GB) at risk from eutrophication. The scheme is based on four properties: importance, hazard, sensitivity to enrichment and sensitivity to recovery. Lake size, conservation status and legislative requirements were used to assess importance. The anthropogenic total phosphorus (P) load estimated from land cover, livestock and population data was used as a measure of the eutrophication hazard. Lakes with a retention time >3 days were considered to be sensitive to enrichment. The Wederburn depth (an estimate of the average summer thermocline depth) was used to predict the potential response of a lake to nutrient reduction. Lakes which were mainly stratified or fully stratified during the summer were expected to respond quickly to remediation. An initial Tier 1 risk assessment was made for all standing waters in GB (approximately 14,300 with surface area greater than 1 ha), using the four parameters derived from nationally available, GIS-based data sources held in the GB Lakes Inventory. Of the 2362 important lakes in GB, the system identified 1736 with low hazard but under potential threat because of their high sensitivity to enrichment. The system assessed that the ecology of 212 was likely to be damaged by eutrophication owing to high hazard and high sensitivity but with relatively poor chance of recovery following remediation. A further 332 lakes were considered to be damaged but were likely to respond to rehabilitation. In summary, the risk-based prioritisation system performed well and provides a useful tool for assessing standing waters at risk of eutrophication on a national basis. Inevitably, however, the need for nationally available datasets at Risk Tier 1 results in data resolution issues and errors may occur. The results highlight the importance of data validation using lake-specific information at Risk Tier 2.


Assuntos
Conservação dos Recursos Naturais , Eutrofização , Água Doce/análise , Modelos Teóricos , Fósforo/análise , Medição de Risco , Reino Unido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA