Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Nat Immunol ; 21(2): 178-185, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31959982

RESUMO

Human leukocyte antigen (HLA)-independent, T cell-mediated targeting of cancer cells would allow immune destruction of malignancies in all individuals. Here, we use genome-wide CRISPR-Cas9 screening to establish that a T cell receptor (TCR) recognized and killed most human cancer types via the monomorphic MHC class I-related protein, MR1, while remaining inert to noncancerous cells. Unlike mucosal-associated invariant T cells, recognition of target cells by the TCR was independent of bacterial loading. Furthermore, concentration-dependent addition of vitamin B-related metabolite ligands of MR1 reduced TCR recognition of cancer cells, suggesting that recognition occurred via sensing of the cancer metabolome. An MR1-restricted T cell clone mediated in vivo regression of leukemia and conferred enhanced survival of NSG mice. TCR transfer to T cells of patients enabled killing of autologous and nonautologous melanoma. These findings offer opportunities for HLA-independent, pan-cancer, pan-population immunotherapies.


Assuntos
Citotoxicidade Imunológica/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Menor/imunologia , Neoplasias/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Subpopulações de Linfócitos T/imunologia , Animais , Sistemas CRISPR-Cas , Estudo de Associação Genômica Ampla , Humanos , Imunoterapia/métodos , Ativação Linfocitária/imunologia , Camundongos
3.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35121660

RESUMO

Multidrug Resistance Proteins (MRPs) are transporters that play critical roles in cancer even though the physiological substrates of these enigmatic transporters are poorly elucidated. In Caenorhabditis elegans, MRP5/ABCC5 is an essential heme exporter because mrp-5 mutants are unviable due to their inability to export heme from the intestine to extraintestinal tissues. Heme supplementation restores viability of these mutants but fails to restore male reproductive deficits. Correspondingly, cell biological studies show that MRP5 regulates heme levels in the mammalian secretory pathway even though MRP5 knockout (KO) mice do not show reproductive phenotypes. The closest homolog of MRP5 is MRP9/ABCC12, which is absent in C. elegans, raising the possibility that MRP9 may genetically compensate for MRP5. Here, we show that MRP5 and MRP9 double KO (DKO) mice are viable but reveal significant male reproductive deficits. Although MRP9 is highly expressed in sperm, MRP9 KO mice show reproductive phenotypes only when MRP5 is absent. Both ABCC transporters localize to mitochondrial-associated membranes, dynamic scaffolds that associate the mitochondria and endoplasmic reticulum. Consequently, DKO mice reveal abnormal sperm mitochondria with reduced mitochondrial membrane potential and fertilization rates. Metabolomics show striking differences in metabolite profiles in the DKO testes, and RNA sequencing shows significant alterations in genes related to mitochondrial function and retinoic acid metabolism. Targeted functional metabolomics reveal lower retinoic acid levels in the DKO testes and higher levels of triglycerides in the mitochondria. These findings establish a model in which MRP5 and MRP9 play a concerted role in regulating male reproductive functions and mitochondrial sufficiency.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Mitocôndrias/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Reprodução/fisiologia , Subfamília B de Transportador de Cassetes de Ligação de ATP , Animais , Transporte Biológico/fisiologia , Caenorhabditis elegans/metabolismo , Heme/metabolismo , Masculino , Potencial da Membrana Mitocondrial/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Espermatozoides/metabolismo , Testículo/metabolismo
4.
J Biol Chem ; 299(7): 104877, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37269954

RESUMO

Abcb10 is a mitochondrial membrane protein involved in hemoglobinization of red cells. Abcb10 topology and ATPase domain localization suggest it exports a substrate, likely biliverdin, out of mitochondria that is necessary for hemoglobinization. In this study, we generated Abcb10 deletion cell lines in both mouse murine erythroleukemia and human erythroid precursor human myelogenous leukemia (K562) cells to better understand the consequences of Abcb10 loss. Loss of Abcb10 resulted in an inability to hemoglobinize upon differentiation in both K562 and mouse murine erythroleukemia cells with reduced heme and intermediate porphyrins and decreased levels of aminolevulinic acid synthase 2 activity. Metabolomic and transcriptional analyses revealed that Abcb10 loss gave rise to decreased cellular arginine levels, increased transcripts for cationic and neutral amino acid transporters with reduced levels of the citrulline to arginine converting enzymes argininosuccinate synthetase and argininosuccinate lyase. The reduced arginine levels in Abcb10-null cells gave rise to decreased proliferative capacity. Arginine supplementation improved both Abcb10-null proliferation and hemoglobinization upon differentiation. Abcb10-null cells showed increased phosphorylation of eukaryotic translation initiation factor 2 subunit alpha, increased expression of nutrient sensing transcription factor ATF4 and downstream targets DNA damage inducible transcript 3 (Chop), ChaC glutathione specific gamma-glutamylcyclotransferase 1 (Chac1), and arginyl-tRNA synthetase 1 (Rars). These results suggest that when the Abcb10 substrate is trapped in the mitochondria, the nutrient sensing machinery is turned on remodeling transcription to block protein synthesis necessary for proliferation and hemoglobin biosynthesis in erythroid models.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Animais , Humanos , Camundongos , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Arginina , Transportadores de Cassetes de Ligação de ATP/metabolismo , Hemoglobinas/metabolismo , Células K562 , Proteínas Mitocondriais/metabolismo
5.
RNA ; 28(7): 927-936, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35459748

RESUMO

In eukaryotic cells, intron lariats produced by the spliceosome contain a 2'5' phosphodiester linkage. The RNA lariat debranching enzyme, Dbr1, is the only enzyme known to hydrolyze this bond. Dbr1 is a member of the metallophosphoesterase (MPE) family of enzymes, and recent X-ray crystal structures and biochemistry data demonstrate that Dbr1 from Entamoeba histolytica uses combinations of Mn2+, Zn2+, and Fe2+ as enzymatic cofactors. Here, we examine the kinetic properties and metal dependence of the Dbr1 homolog from Saccharomyces cerevisiae (yDbr1). Elemental analysis measured stoichiometric quantities of Fe and Zn in yDbr1 purified following heterologous expression E. coli We analyzed the ability of Fe2+, Zn2+, and Mn2+ to reconstitute activity in metal-free apoenzyme. Purified yDbr1 was highly active, turning over substrate at 5.6 sec-1, and apo-yDbr1 reconstituted with Fe2+ was the most active species, turning over at 9.2 sec-1 We treated human lymphoblastoid cells with the iron-chelator deferoxamine and measured a twofold increase in cellular lariats. These data suggest that Fe is an important biological cofactor for Dbr1 enzymes.


Assuntos
Escherichia coli , Saccharomyces cerevisiae , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Íntrons , Metais , RNA/química , RNA Nucleotidiltransferases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
6.
BMC Infect Dis ; 23(1): 864, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066442

RESUMO

IMPORTANCE: Acellular human amniotic fluid (hAF) is an antimicrobial and anti-inflammatory fluid that has been used to treat various pro-inflammatory conditions. In a feasibility study, we have previously demonstrated that hAF could be safely administered to severely ill patients with coronavirus disease-19 (COVID-19). The impact of acellular hAF on markers of systemic inflammation and clinical outcomes during COVID-19 infection remain unknown. OBJECTIVE: To determine the safety and efficacy of acellular, sterile processed intravenously administered hAF on markers of systemic inflammation during COVID-19. DESIGN, SETTINGS AND PARTICIPANTS: This single-center Phase I/II randomized, placebo controlled clinical trial enrolled adult (age ≥ 18 years) patients hospitalized for respiratory symptoms of COVID-19, including hypoxemia, tachypnea or dyspnea. The study was powered for outcomes with an anticipated enrollment of 60 patients. From 09/28/2020 to 02/04/2022 we enrolled and randomized 47 (of an anticipated 60) patients hospitalized due to COVID-19. One patient withdrew consent after randomization but prior to treatment. Safety outcomes to 30 days were collected through hospital discharge and were complete by the end of screening on 6/30/2022. INTERVENTIONS: Intravenous administration of 10 cc sterile processed acellular hAF once daily for up to 5 days vs placebo. MAIN OUTCOME AND MEASURES: Blood biomarkers of inflammation, including C-Reactive protein (CRP), lactate dehydrogenase, D-dimer, and interleukin-6 (IL-6), as well as safety outcomes. RESULTS: Patients who were randomized to hAF (n = 23) were no more likely to have improvements in CRP from baseline to Day 6 than patients who were randomized to placebo (n = 24) hAF: -5.9 [IQR -8.2, -0.6] vs placebo: -5.9 [-9.4, -2.05]; p = 0.6077). There were no significant differences in safety outcomes or adverse events. Secondary measures of inflammation including lactate dehydrogenase, D-dimer and IL-6 were not statistically different from baseline to day 6. CONCLUSIONS AND RELEVANCE: In this randomized clinical trial involving hospitalized patients with COVID-19, the intravenous administration of 10 cc of hAF daily for 5 days did not result in statistically significant differences in either safety or markers of systemic inflammation compared to placebo, though we did not achieve our enrollment target of 60 patients. TRIAL REGISTRATION: This trial was registered at ClinicalTrials.gov as #NCT04497389 on 04/08/2020.


Assuntos
COVID-19 , Adulto , Humanos , Líquido Amniótico , COVID-19/terapia , Inflamação , Interleucina-6 , Lactato Desidrogenases , SARS-CoV-2 , Resultado do Tratamento
7.
J Biol Chem ; 297(2): 100972, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34280433

RESUMO

Heme plays a critical role in catalyzing life-essential redox reactions in all cells, and its synthesis must be tightly balanced with cellular requirements. Heme synthesis in eukaryotes is tightly regulated by the mitochondrial AAA+ unfoldase CLPX (caseinolytic mitochondrial matrix peptidase chaperone subunit X), which promotes heme synthesis by activation of δ-aminolevulinate synthase (ALAS/Hem1) in yeast and regulates turnover of ALAS1 in human cells. However, the specific mechanisms by which CLPX regulates heme synthesis are unclear. In this study, we interrogated the mechanisms by which CLPX regulates heme synthesis in erythroid cells. Quantitation of enzyme activity and protein degradation showed that ALAS2 stability and activity were both increased in the absence of CLPX, suggesting that CLPX primarily regulates ALAS2 by control of its turnover, rather than its activation. However, we also showed that CLPX is required for PPOX (protoporphyrinogen IX oxidase) activity and maintenance of FECH (ferrochelatase) levels, which are the terminal enzymes in heme synthesis, likely accounting for the heme deficiency and porphyrin accumulation observed in Clpx-/- cells. Lastly, CLPX is required for iron utilization for hemoglobin synthesis during erythroid differentiation. Collectively, our data show that the role of CLPX in yeast ALAS/Hem1 activation is not conserved in vertebrates as vertebrates rely on CLPX to regulate ALAS turnover as well as PPOX and FECH activity. Our studies reveal that CLPX mutations may cause anemia and porphyria via dysregulation of ALAS, FECH, and PPOX activities, as well as of iron metabolism.


Assuntos
5-Aminolevulinato Sintetase/metabolismo , Endopeptidase Clp/metabolismo , Ferroquelatase/metabolismo , Heme/biossíntese , Ferro/metabolismo , Leucemia Eritroblástica Aguda/patologia , Mitocôndrias/metabolismo , Animais , Linhagem Celular Tumoral , Endopeptidase Clp/genética , Ativação Enzimática , Técnicas de Inativação de Genes/métodos , Leucemia Eritroblástica Aguda/enzimologia , Leucemia Eritroblástica Aguda/genética , Camundongos , Modelos Animais , Proteólise , Peixe-Zebra
8.
Am J Physiol Heart Circ Physiol ; 322(3): H406-H416, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35060752

RESUMO

Amniotic products are potent immunomodulators used clinically to repair tissue injury. Little information exists regarding the potential of cell-free human amniotic fluid (hAF) to treat cardiovascular disease. Herein, we sought to determine the influence and efficacy of acellular hAF on myocardial ischemia-reperfusion injury. Processed hAF was obtained from volunteer donors at the time of elective caesarean section and manufactured using proprietary methods. Left anterior descending coronary artery ligation was performed on rats for 60 min. Thirty minutes after release and reperfusion, either saline or hAF was injected intramyocardially. Serial echocardiography revealed that compared with saline-injected rats, hAF animals maintained their ejection fraction and did not adversely remodel through the 4-wk period. This preserved ventricular function correlated with decreased infarct size, less fibrosis, and reduced expression of cytokines and infiltrating inflammatory cells. Comparative arrays of different donor hAF lots confirmed the presence of a wide array of immunomodulatory and host-defense proteins. The observed functional cardioprotection was furthermore evident when given intravenously and across multiple hAF donors. In conclusion, our data demonstrate, for the first time, the cardioprotective effect of acellular hAF on myocardial injury. These observations spanned across diverse donors and likely result from the mixture of a plethora of naturally produced cytokines, chemokines, and immune-modulating proteins rather than a single, defined mechanistic culprit. The ubiquitous availability of hAF as a cell-free solution further suggests its potential for widespread adoption as a therapy for myocardial ischemia-reperfusion injury.NEW & NOTEWORTHY Rather than targeting a single pathway implicated in myocardial reperfusion injury, cell-free human amniotic fluid-a naturally derived cocktail composed of thousands of proteins involved with innate immunity and anti-inflammation-markedly reduces injury and preserves cardiac function in a model of rodent myocardial ischemia-reperfusion. With its ubiquitous availability as well as its anti-inflammatory and nonimmunogenic properties, human cell-free amniotic fluid offers potential for use as a cardioprotective adjunct.


Assuntos
Líquido Amniótico/química , Cardiotônicos/uso terapêutico , Fatores Imunológicos/uso terapêutico , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Animais , Cardiotônicos/análise , Citocinas/genética , Citocinas/metabolismo , Feminino , Humanos , Fatores Imunológicos/análise , Masculino , Miocárdio/metabolismo , Ratos , Ratos Sprague-Dawley , Função Ventricular
9.
Hepatology ; 73(5): 1736-1746, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32681675

RESUMO

BACKGROUND AND AIMS: The risk for hepatocellular carcinoma (HCC) is increased in acute hepatic porphyrias (AHP). The aim of this study was to explore the clinicopathologic characteristics, outcomes, and frequency of HCC in patients with AHP in the United States. APPROACH AND RESULTS: This cross-sectional analysis evaluated patients with HCC in a multicenter, longitudinal study of AHP. Among 327 patients with AHP, 5 (1.5%) were diagnosed with HCC. Of the 5 HCC cases, 4 had acute intermittent porphyria and 1 had variegate porphyria, confirmed by biochemical and/or genetic testing. All patients were white females, with a median age of 27 years (range 21-75) at diagnosis. The median age at HCC diagnosis was 69 years (range 61-74). AHP was asymptomatic in 2 patients; 2 reported sporadic attacks; and 1 reported recurrent attacks (>4 attacks/year). All patients had a single HCC lesion on liver imaging that was 1.8-6.5 centimeters in diameter. Serum alpha fetoprotein levels were below 10 ng/mL in all 4 patients with available results. Four patients underwent liver resection, and 1 was treated with radioembolization. No significant inflammation or fibrosis was found in adjacent liver tissues of 3 patients who underwent liver resection. Two patients developed recurrence of HCC at 22 and 26 months following liver resection. All patients are alive with survival times from HCC diagnosis ranging from 26-153 months. CONCLUSION: In this U.S. study, 1.5% of patients with AHP had HCC. HCC in AHP occurred in the absence of cirrhosis, which contrasts with other chronic liver diseases. Patients with AHP, regardless of clinical attacks, should be screened for HCC, beginning at age 50. The pathogenesis of hepatocarcinogenesis in AHP is unknown and needs further investigation.


Assuntos
Carcinoma Hepatocelular/etiologia , Neoplasias Hepáticas/etiologia , Porfirias Hepáticas/complicações , Adulto , Fatores Etários , Idoso , Carcinoma Hepatocelular/epidemiologia , Carcinoma Hepatocelular/patologia , Estudos Transversais , Feminino , Humanos , Neoplasias Hepáticas/epidemiologia , Neoplasias Hepáticas/patologia , Estudos Longitudinais , Pessoa de Meia-Idade , Porfirias Hepáticas/epidemiologia , Porfirias Hepáticas/patologia , Estados Unidos/epidemiologia , Adulto Jovem
10.
J Biol Chem ; 295(32): 11002-11020, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32518166

RESUMO

Mitochondrial iron import is essential for iron-sulfur cluster formation and heme biosynthesis. Two nuclear-encoded vertebrate mitochondrial high-affinity iron importers, mitoferrin1 (Mfrn1) and Mfrn2, have been identified in mammals. In mice, the gene encoding Mfrn1, solute carrier family 25 member 37 (Slc25a37), is highly expressed in sites of erythropoiesis, and whole-body Slc25a37 deletion leads to lethality. Here, we report that mice with a deletion of Slc25a28 (encoding Mfrn2) are born at expected Mendelian ratios, but show decreased male fertility due to reduced sperm numbers and sperm motility. Mfrn2-/- mice placed on a low-iron diet exhibited reduced mitochondrial manganese, cobalt, and zinc levels, but not reduced iron. Hepatocyte-specific loss of Slc25a37 (encoding Mfrn1) in Mfrn2-/- mice did not affect animal viability, but resulted in a 40% reduction in mitochondrial iron and reduced levels of oxidative phosphorylation proteins. Placing animals on a low-iron diet exaggerated the reduction in mitochondrial iron observed in liver-specific Mfrn1/2-knockout animals. Mfrn1-/-/Mfrn2-/- bone marrow-derived macrophages or skin fibroblasts in vitro were unable to proliferate, and overexpression of Mfrn1-GFP or Mfrn2-GFP prevented this proliferation defect. Loss of both mitoferrins in hepatocytes dramatically reduced regeneration in the adult mouse liver, further supporting the notion that both mitoferrins transport iron and that their absence limits proliferative capacity of mammalian cells. We conclude that Mfrn1 and Mfrn2 contribute to mitochondrial iron homeostasis and are required for high-affinity iron import during active proliferation of mammalian cells.


Assuntos
Proteínas de Transporte de Cátions/fisiologia , Proliferação de Células/fisiologia , Regeneração Hepática/fisiologia , Proteínas de Membrana Transportadoras/fisiologia , Animais , Homeostase , Ferro/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Hepáticas/metabolismo
11.
Hum Mol Genet ; 28(11): 1755-1767, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30615115

RESUMO

Acute intermittent porphyria (AIP) is an inborn error of heme biosynthesis due to the deficiency of hydroxymethylbilane synthase (HMBS) activity. Human AIP heterozygotes have episodic acute neurovisceral attacks that typically start after puberty, whereas patients with homozygous dominant AIP (HD-AIP) have early-onset chronic neurological impairment, including ataxia and psychomotor retardation. To investigate the dramatically different manifestations, knock-in mice with human HD-AIP missense mutations c.500G>A (p.Arg167Glu) or c.518_519GC>AG (p.Arg173Glu), designated R167Q or R173Q mice, respectively, were generated and compared with the previously established T1/T2 mice with ~30% residual HMBS activity and the heterozygous AIP phenotype. Homozygous R173Q mice were embryonic lethal, while R167Q homozygous mice (R167Q+/+) had ~5% of normal HMBS activity, constitutively elevated plasma and urinary 5-aminolevulinic acid (ALA) and porphobilinogen (PBG), profound early-onset ataxia, delayed motor development and markedly impaired rotarod performance. Central nervous system (CNS) histology was grossly intact, but CNS myelination was delayed and overall myelin volume was decreased. Heme concentrations in liver and brain were similar to those of T1/T2 mice. Notably, ALA and PBG concentrations in the cerebral spinal fluid and CNS regions were markedly elevated in R167Q+/+ mice compared with T1/T2 mice. When the T1/T2 mice were administered phenobarbital, ALA and PBG markedly accumulated in their liver and plasma, but not in the CNS, indicating that ALA and PBG do not readily cross the blood-brain barrier. Taken together, these studies suggest that the severe HD-AIP neurological phenotype results from decreased myelination and the accumulation of locally produced neurotoxic porphyrin precursors within the CNS.


Assuntos
Hidroximetilbilano Sintase/genética , Doenças do Sistema Nervoso/genética , Porfiria Aguda Intermitente/genética , Transtornos Psicomotores/genética , Ácido Aminolevulínico/sangue , Ácido Aminolevulínico/urina , Animais , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Técnicas de Introdução de Genes , Genes Dominantes , Homozigoto , Humanos , Hidroximetilbilano Sintase/metabolismo , Fígado/metabolismo , Camundongos , Mutação de Sentido Incorreto/genética , Bainha de Mielina/genética , Bainha de Mielina/metabolismo , Doenças do Sistema Nervoso/sangue , Doenças do Sistema Nervoso/patologia , Doenças do Sistema Nervoso/urina , Fenobarbital/farmacologia , Porfobilinogênio/sangue , Porfobilinogênio/urina , Porfiria Aguda Intermitente/sangue , Porfiria Aguda Intermitente/patologia , Porfiria Aguda Intermitente/urina , Transtornos Psicomotores/sangue , Transtornos Psicomotores/patologia , Transtornos Psicomotores/urina
12.
Hepatology ; 71(5): 1546-1558, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31512765

RESUMO

BACKGROUND AND AIMS: Acute hepatic porphyria comprises a group of rare genetic diseases caused by mutations in genes involved in heme biosynthesis. Patients can experience acute neurovisceral attacks, debilitating chronic symptoms, and long-term complications. There is a lack of multinational, prospective data characterizing the disease and current treatment practices in severely affected patients. APPROACH AND RESULTS: EXPLORE is a prospective, multinational, natural history study characterizing disease activity and clinical management in patients with acute hepatic porphyria who experience recurrent attacks. Eligible patients had a confirmed acute hepatic porphyria diagnosis and had experienced ≥3 attacks in the prior 12 months or were receiving prophylactic treatment. A total of 112 patients were enrolled and followed for at least 6 months. In the 12 months before the study, patients reported a median (range) of 6 (0-52) acute attacks, with 52 (46%) patients receiving hemin prophylaxis. Chronic symptoms were reported by 73 (65%) patients, with 52 (46%) patients experiencing these daily. During the study, 98 (88%) patients experienced a total of 483 attacks, 77% of which required treatment at a health care facility and/or hemin administration (median [range] annualized attack rate 2.0 [0.0-37.0]). Elevated levels of hepatic δ-aminolevulinic acid synthase 1 messenger ribonucleic acid levels, δ-aminolevulinic acid, and porphobilinogen compared with the upper limit of normal in healthy individuals were observed at baseline and increased further during attacks. Patients had impaired quality of life and increased health care utilization. CONCLUSIONS: Patients experienced attacks often requiring treatment in a health care facility and/or with hemin, as well as chronic symptoms that adversely influenced day-to-day functioning. In this patient group, the high disease burden and diminished quality of life highlight the need for novel therapies.


Assuntos
Sintase do Porfobilinogênio/deficiência , Porfirias Hepáticas/tratamento farmacológico , Porfirias Hepáticas/fisiopatologia , Adulto , Idoso , Biomarcadores/urina , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Sintase do Porfobilinogênio/urina , Porfirias Hepáticas/urina , Estudos Prospectivos , Recidiva , Adulto Jovem
13.
Genet Med ; 22(3): 590-597, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31690837

RESUMO

PURPOSE: Acute intermittent porphyria (AIP) is a rare inborn error of heme biosynthesis characterized by life-threatening acute attacks. Few studies have assessed quality of life (QoL) in AIP and those that have had small sample sizes and used tools that may not have captured important domains. METHODS: Baseline data from the Porphyrias Consortium's Longitudinal Study were obtained for 259 patients, including detailed disease and medical history data, and the following Patient-Reported Outcomes Measurement Information System (PROMIS) scales: anxiety, depression, pain interference, fatigue, sleep disturbance, physical function, and satisfaction with social roles. Relationships between PROMIS scores and clinical and biochemical AIP features were explored. RESULTS: PROMIS scores were significantly worse than the general population across all domains, except depression. Each domain discriminated well between asymptomatic and symptomatic patients with symptomatic patients having worse scores. Many important clinical variables like symptom frequency were significantly associated with domain scores in univariate analyses, showing responsiveness of the scales, specifically pain interference and fatigue. However, most regression models only explained ~20% of the variability observed in domain scores. CONCLUSION: Pain interference and fatigue were the most responsive scales in measuring QoL in this AIP cohort. Future studies should assess whether these scales capture longitudinal disease progression and treatment response.


Assuntos
Heme/genética , Medidas de Resultados Relatados pelo Paciente , Porfiria Aguda Intermitente/epidemiologia , Adolescente , Adulto , Idoso , Ansiedade/epidemiologia , Depressão/epidemiologia , Fadiga/epidemiologia , Feminino , Heme/biossíntese , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Porfiria Aguda Intermitente/genética , Porfiria Aguda Intermitente/patologia , Qualidade de Vida , Índice de Gravidade de Doença , Transtornos do Sono-Vigília/epidemiologia , Adulto Jovem
14.
Blood ; 132(10): 987-998, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-29991557

RESUMO

During erythroid differentiation, the erythron must remodel its protein constituents so that the mature red cell contains hemoglobin as the chief cytoplasmic protein component. For this, ∼109 molecules of heme must be synthesized, consuming 1010 molecules of succinyl-CoA. It has long been assumed that the source of succinyl-coenzyme A (CoA) for heme synthesis in all cell types is the tricarboxylic acid (TCA) cycle. Based upon the observation that 1 subunit of succinyl-CoA synthetase (SCS) physically interacts with the first enzyme of heme synthesis (5-aminolevulinate synthase 2, ALAS2) in erythroid cells, it has been posited that succinyl-CoA for ALA synthesis is provided by the adenosine triphosphate-dependent reverse SCS reaction. We have now demonstrated that this is not the manner by which developing erythroid cells provide succinyl-CoA for ALA synthesis. Instead, during late stages of erythropoiesis, cellular metabolism is remodeled so that glutamine is the precursor for ALA following deamination to α-ketoglutarate and conversion to succinyl-CoA by α-ketoglutarate dehydrogenase (KDH) without equilibration or passage through the TCA cycle. This may be facilitated by a direct interaction between ALAS2 and KDH. Succinate is not an effective precursor for heme, indicating that the SCS reverse reaction does not play a role in providing succinyl-CoA for heme synthesis. Inhibition of succinate dehydrogenase by itaconate, which has been shown in macrophages to dramatically increase the concentration of intracellular succinate, does not stimulate heme synthesis as might be anticipated, but actually inhibits hemoglobinization during late erythropoiesis.


Assuntos
5-Aminolevulinato Sintetase/metabolismo , Acil Coenzima A/metabolismo , Eritropoese/fisiologia , Glutamina/metabolismo , Heme/biossíntese , Complexo Cetoglutarato Desidrogenase/metabolismo , Animais , Linhagem Celular Tumoral , Camundongos
15.
Proc Natl Acad Sci U S A ; 114(38): E8045-E8052, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28874591

RESUMO

Loss-of-function mutations in genes for heme biosynthetic enzymes can give rise to congenital porphyrias, eight forms of which have been described. The genetic penetrance of the porphyrias is clinically variable, underscoring the role of additional causative, contributing, and modifier genes. We previously discovered that the mitochondrial AAA+ unfoldase ClpX promotes heme biosynthesis by activation of δ-aminolevulinate synthase (ALAS), which catalyzes the first step of heme synthesis. CLPX has also been reported to mediate heme-induced turnover of ALAS. Here we report a dominant mutation in the ATPase active site of human CLPX, p.Gly298Asp, that results in pathological accumulation of the heme biosynthesis intermediate protoporphyrin IX (PPIX). Amassing of PPIX in erythroid cells promotes erythropoietic protoporphyria (EPP) in the affected family. The mutation in CLPX inactivates its ATPase activity, resulting in coassembly of mutant and WT protomers to form an enzyme with reduced activity. The presence of low-activity CLPX increases the posttranslational stability of ALAS, causing increased ALAS protein and ALA levels, leading to abnormal accumulation of PPIX. Our results thus identify an additional molecular mechanism underlying the development of EPP and further our understanding of the multiple mechanisms by which CLPX controls heme metabolism.


Assuntos
5-Aminolevulinato Sintetase/metabolismo , Endopeptidase Clp , Mutação de Sentido Incorreto , Porfiria Eritropoética , Protoporfirinas/biossíntese , 5-Aminolevulinato Sintetase/genética , Adolescente , Substituição de Aminoácidos , Endopeptidase Clp/genética , Endopeptidase Clp/metabolismo , Estabilidade Enzimática/genética , Feminino , Humanos , Masculino , Porfiria Eritropoética/genética , Porfiria Eritropoética/metabolismo , Porfiria Eritropoética/patologia , Protoporfirinas/genética
16.
J Biol Chem ; 293(51): 19797-19811, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30366982

RESUMO

Erythropoietin (EPO) signaling is critical to many processes essential to terminal erythropoiesis. Despite the centrality of iron metabolism to erythropoiesis, the mechanisms by which EPO regulates iron status are not well-understood. To this end, here we profiled gene expression in EPO-treated 32D pro-B cells and developing fetal liver erythroid cells to identify additional iron regulatory genes. We determined that FAM210B, a mitochondrial inner-membrane protein, is essential for hemoglobinization, proliferation, and enucleation during terminal erythroid maturation. Fam210b deficiency led to defects in mitochondrial iron uptake, heme synthesis, and iron-sulfur cluster formation. These defects were corrected with a lipid-soluble, small-molecule iron transporter, hinokitiol, in Fam210b-deficient murine erythroid cells and zebrafish morphants. Genetic complementation experiments revealed that FAM210B is not a mitochondrial iron transporter but is required for adequate mitochondrial iron import to sustain heme synthesis and iron-sulfur cluster formation during erythroid differentiation. FAM210B was also required for maximal ferrochelatase activity in differentiating erythroid cells. We propose that FAM210B functions as an adaptor protein that facilitates the formation of an oligomeric mitochondrial iron transport complex, required for the increase in iron acquisition for heme synthesis during terminal erythropoiesis. Collectively, our results reveal a critical mechanism by which EPO signaling regulates terminal erythropoiesis and iron metabolism.


Assuntos
Células Eritroides/metabolismo , Eritropoetina/metabolismo , Ferroquelatase/metabolismo , Heme/biossíntese , Ferro/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Animais , Células Eritroides/citologia , Eritropoese , Células HEK293 , Humanos , Proteínas de Membrana/química , Camundongos , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/química , Transporte Proteico
17.
Genet Med ; 21(11): 2605-2613, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31073229

RESUMO

With the advent of precision and genomic medicine, a critical issue is whether a disease gene variant is pathogenic or benign. Such is the case for the three autosomal dominant acute hepatic porphyrias (AHPs), including acute intermittent porphyria, hereditary coproporphyria, and variegate porphyria, each resulting from the half-normal enzymatic activities of hydroxymethylbilane synthase, coproporphyrinogen oxidase, and protoporphyrinogen oxidase, respectively. To date, there is no public database that documents the likely pathogenicity of variants causing the porphyrias, and more specifically, the AHPs with biochemically and clinically verified information. Therefore, an international collaborative with the European Porphyria Network and the National Institutes of Health/National Center for Advancing Translational Sciences/National Institute of Diabetes and Digestive and Kidney Diseases (NIH/NCATS/NIDDK)-sponsored Porphyrias Consortium of porphyria diagnostic experts is establishing an online database that will collate biochemical and clinical evidence verifying the pathogenicity of the published and newly identified variants in the AHP-causing genes. The overall goal of the International Porphyria Molecular Diagnostic Collaborative is to determine the pathogenic and benign variants for all eight porphyrias. Here we describe the overall objectives and the initial efforts to validate pathogenic and benign variants in the respective heme biosynthetic genes causing the AHPs.


Assuntos
Porfirias/genética , Porfirias/fisiopatologia , Virulência/genética , Curadoria de Dados/métodos , Bases de Dados Factuais , Feminino , Humanos , Masculino , Patologia Molecular , Sintase do Porfobilinogênio/deficiência , Sintase do Porfobilinogênio/genética , Porfiria Aguda Intermitente/genética , Porfiria Aguda Intermitente/fisiopatologia , Porfirias Hepáticas/genética , Porfirias Hepáticas/fisiopatologia , Estados Unidos
18.
Mol Genet Metab ; 128(3): 164-177, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31326287

RESUMO

Porphyrias, is a general term for a group of metabolic diseases that are genetic in nature. In each specific porphyria the activity of specific enzymes in the heme biosynthetic pathway is defective and leads to accumulation of pathway intermediates. Phenotypically, each disease leads to either neurologic and/or photocutaneous symptoms based on the metabolic intermediate that accumulates. In each porphyria the distinct patterns of these substances in plasma, erythrocytes, urine and feces are the basis for diagnostically defining the metabolic defect underlying the clinical observations. Porphyrias may also be classified as either erythropoietic or hepatic, depending on the principal site of accumulation of pathway intermediates. The erythropoietic porphyrias are congenital erythropoietic porphyria (CEP), and erythropoietic protoporphyria (EPP). The acute hepatic porphyrias include ALA dehydratase deficiency porphyria, acute intermittent porphyria (AIP), hereditary coproporphyria (HCP) and variegate porphyria (VP). Porphyria cutanea tarda (PCT) is the only porphyria that has both genetic and/or environmental factors that lead to reduced activity of uroporphyrinogen decarboxylase in the liver. Each of the 8 enzymes in the heme biosynthetic pathway have been associated with a specific porphyria (Table 1). Mutations affecting the erythroid form of ALA synthase (ALAS2) are most commonly associated with X-linked sideroblastic anemia, however, gain-of-function mutations of ALAS2 have also been associated with a variant form of EPP. This overview does not describe the full clinical spectrum of the porphyrias, but is meant to be an overview of the biochemical steps that are required to make heme in both erythroid and non-erythroid cells.


Assuntos
Heme/biossíntese , Porfirias/genética , Animais , Vias Biossintéticas , Meio Ambiente , Humanos , Fígado/fisiopatologia , Camundongos , Mutação , Sintase do Porfobilinogênio/deficiência , Porfiria Aguda Intermitente , Porfirias/classificação , Porfirias/congênito , Porfirias Hepáticas , Uroporfirinogênio Descarboxilase/metabolismo
19.
Mol Genet Metab ; 128(3): 309-313, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31395332

RESUMO

Erythropoietic protoporphyria (EPP), the most common porphyria of childhood and the third most common porphyria of adulthood, is characterized clinically by painful, non-blistering cutaneous photosensitivity. Two distinct inheritance patterns involving mutations affecting genes that encode enzymes of the heme biosynthetic pathway underlie the clinical phenotype. Aminolevulinic acid synthase 2 (ALAS2), the rate limiting enzyme of the heme pathway in the erythron, is a therapeutic target in EPP because inhibiting enzyme function would reduce downstream production of protoporphyrin IX (PPIX), preventing accumulation of the toxic molecule and thereby ameliorating symptoms. Isoniazid (INH) is widely used for treatment of latent and active M. tuberculosis (TB). Sideroblastic anemia is observed in some patients taking INH, and studies have shown that this process is a consequence of inhibition of ALAS2 by INH. Based on these observations, we postulated that INH might have therapeutic activity in patients with EPP. We challenged this hypothesis in a murine model of EPP and showed that, after 4 weeks of treatment with INH, both plasma PPIX and hepatic PPIX were significantly reduced. Next, we tested the effect of INH on patients with EPP. After eight weeks, no significant difference in plasma or red cell PPIX was observed among the 15 patients enrolled in the study. These results demonstrate that while INH can lower PPIX in an animal model of EPP, the standard dose used to treat TB is insufficient to affect levels in humans.


Assuntos
5-Aminolevulinato Sintetase/antagonistas & inibidores , Isoniazida/uso terapêutico , Protoporfiria Eritropoética/tratamento farmacológico , Protoporfirinas/sangue , Anemia Sideroblástica/enzimologia , Animais , Modelos Animais de Doenças , Feminino , Humanos , Fígado/química , Fígado/efeitos dos fármacos , Masculino , Camundongos , Projetos Piloto , Estudo de Prova de Conceito , Protoporfiria Eritropoética/genética , Protoporfirinas/metabolismo
20.
FEMS Yeast Res ; 19(8)2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31711143

RESUMO

PEX34, encoding a peroxisomal protein implicated in regulating peroxisome numbers, was identified as a high copy suppressor, capable of bypassing impaired acetate utilization of agc1∆ yeast. However, improved growth of agc1∆ yeast on acetate is not mediated through peroxisome proliferation. Instead, stress to the endoplasmic reticulum and mitochondria from PEX34 overexpression appears to contribute to enhanced acetate utilization of agc1∆ yeast. The citrate/2-oxoglutarate carrier Yhm2p is required for PEX34 stimulated growth of agc1∆ yeast on acetate medium, suggesting that the suppressor effect is mediated through increased activity of a redox shuttle involving mitochondrial citrate export. Metabolomic analysis also revealed redirection of acetyl-coenzyme A (CoA) from synthetic reactions for amino acids in PEX34 overexpressing yeast. We propose a model in which increased formation of products from the glyoxylate shunt, together with enhanced utilization of acetyl-CoA, promotes the activity of an alternative mitochondrial redox shuttle, partially substituting for loss of yeast AGC1.


Assuntos
Acetatos/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/genética , Antiporters/genética , Proteínas de Membrana/genética , Peroxinas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Acetatos/farmacologia , Acetilcoenzima A/metabolismo , Ácido Aspártico/metabolismo , Retículo Endoplasmático/metabolismo , Expressão Gênica , Metabolômica , Mitocôndrias/metabolismo , Peroxissomos/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA