Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Pathol ; 189(1): 200-213, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30339838

RESUMO

Acute lung injury and its more severe form, acute respiratory distress syndrome, are life-threatening respiratory disorders. Overwhelming pulmonary inflammation and endothelium disruption are commonly observed. Endothelial cells (ECs) are well recognized as key regulators in leukocyte adhesion and migration in response to bacterial infection. Prolyl hydroxylase domain (PHD)-2 protein, a major PHD in ECs, plays a critical role in intracellular oxygen homeostasis, angiogenesis, and pulmonary hypertension. However, its role in endothelial inflammatory response is unclear. We investigated the role of PHD2 in ECs during endotoxin-induced lung inflammatory responses with EC-specific PHD2 inducible knockout mice. On lipopolysaccharide challenge, PHD2 depletion in ECs attenuates lipopolysaccharide-induced increases of lung vascular permeability, edema, and inflammatory cell infiltration. Moreover, EC-specific PHD2 inducible knockout mice exhibit improved adherens junction integrity and endothelial barrier function. Mechanistically, PHD2 knockdown induces vascular endothelial cadherin in mouse lung microvascular primary endothelial cells. Moreover, PHD2 knockdown can increase hypoxia-inducible factor/vascular endothelial protein tyrosine phosphatase signaling and reactive oxygen species-dependent p38 activation, leading to the induction of vascular endothelial cadherin. Data indicate that PHD2 depletion prevents the formation of leaky vessels and edema by regulating endothelial barrier function. It provides direct in vivo evidence to suggest that PHD2 plays a pivotal role in vascular inflammation. The inhibition of endothelial PHD2 activity may be a new therapeutic strategy for acute inflammatory diseases.


Assuntos
Lesão Pulmonar Aguda/imunologia , Permeabilidade Capilar/efeitos dos fármacos , Endotélio Vascular/imunologia , Prolina Dioxigenases do Fator Induzível por Hipóxia/imunologia , Lipopolissacarídeos/toxicidade , Vasculite/imunologia , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/patologia , Células Epiteliais Alveolares/imunologia , Células Epiteliais Alveolares/patologia , Animais , Caderinas/genética , Caderinas/imunologia , Permeabilidade Capilar/genética , Permeabilidade Capilar/imunologia , Adesão Celular/efeitos dos fármacos , Adesão Celular/genética , Adesão Celular/imunologia , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Movimento Celular/imunologia , Células Endoteliais/imunologia , Células Endoteliais/patologia , Endotélio Vascular/patologia , Humanos , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Leucócitos/imunologia , Leucócitos/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Sistema de Sinalização das MAP Quinases/imunologia , Masculino , Camundongos , Camundongos Transgênicos , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/imunologia , Estados Unidos , Vasculite/induzido quimicamente , Vasculite/genética , Vasculite/patologia , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/imunologia
2.
Circ Res ; 123(4): 477-494, 2018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-30355249

RESUMO

Our understanding of the role of the vascular endothelium has evolved over the past 2 decades, with the recognition that it is a dynamically regulated organ and that it plays a nodal role in a variety of physiological and pathological processes. Endothelial cells (ECs) are not only a barrier between the circulation and peripheral tissues, but also actively regulate vascular tone, blood flow, and platelet function. Dysregulation of ECs contributes to pathological conditions such as vascular inflammation, atherosclerosis, hypertension, cardiomyopathy, retinopathy, neuropathy, and cancer. The close anatomic relationship between vascular endothelium and highly vascularized metabolic organs/tissues suggests that the crosstalk between ECs and these organs is vital for both vascular and metabolic homeostasis. Numerous reports support that hyperlipidemia, hyperglycemia, and other metabolic stresses result in endothelial dysfunction and vascular complications. However, how ECs may regulate metabolic homeostasis remains poorly understood. Emerging data suggest that the vascular endothelium plays an unexpected role in the regulation of metabolic homeostasis and that endothelial dysregulation directly contributes to the development of metabolic disorders. Here, we review recent studies about the pivotal role of ECs in glucose and lipid homeostasis. In particular, we introduce the concept that the endothelium adjusts its barrier function to control the transendothelial transport of fatty acids, lipoproteins, LPLs (lipoprotein lipases), glucose, and insulin. In addition, we summarize reports that ECs communicate with metabolic cells through EC-secreted factors and we discuss how endothelial dysregulation contributes directly to the development of obesity, insulin resistance, dyslipidemia, diabetes mellitus, cognitive defects, and fatty liver disease.


Assuntos
Endotélio Vascular/metabolismo , Metabolismo Energético , Homeostase , Doenças Metabólicas/etiologia , Animais , Humanos
3.
Arterioscler Thromb Vasc Biol ; 37(8): 1524-1535, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28596374

RESUMO

OBJECTIVE: Bacterial endotoxin (lipopolysaccharide)-mediated sepsis involves dysregulated systemic inflammation, which injures the lung and other organs, often fatally. Vascular endothelial cells act as both targets and mediators of lipopolysaccharide-induced inflammatory responses. Dysfunction of endothelium results in increases of proinflammatory cytokine production and permeability leakage. BMPER (bone morphogenetic protein-binding endothelial regulator), an extracellular modulator of bone morphogenetic protein signaling, has been identified as a vital component in chronic endothelial inflammatory responses and atherosclerosis. However, it is unclear whether BMPER also regulates inflammatory response in an acute setting such as sepsis. To address this question, we investigated the role of BMPER during lipopolysaccharide-induced acute lung injury. APPROACH AND RESULTS: Mice missing 1 allele of BMPER (BMPER+/- mice used in the place of BMPER-/- mice that die at birth) were used for lipopolysaccharide challenge. Lipopolysaccharide-induced pulmonary inflammation and injury was reduced in BMPER+/- mice as shown by several measures, including survival rate, infiltration of inflammatory cells, edema, and production of proinflammatory cytokines. Mechanistically, we have demonstrated that BMPER is required and sufficient for the activation of nuclear factor of activated T cells c1. This BMPER-induced nuclear factor of activated T cells activation is coordinated by multiple signaling pathways, including bone morphogenetic protein-independent low-density lipoprotein receptor-related protein 1-extracellular signal-regulated kinase activation, calcineurin signaling, and low-density lipoprotein receptor-related protein 1ß-mediated nuclear factor 45 nuclear export in response to BMPER treatment. CONCLUSIONS: We conclude that BMPER plays a pivotal role in pulmonary inflammatory response, which provides new therapeutic options against sepsis shock. The new signaling pathway initiated by BMPER/low-density lipoprotein receptor-related protein 1 axis broadens our understanding about BMPER's role in vascular homeostasis.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Proteínas de Transporte/metabolismo , Células Endoteliais/metabolismo , Endotoxinas , Pulmão/irrigação sanguínea , Pneumonia/metabolismo , Receptores de LDL/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/patologia , Animais , Apoptose , Permeabilidade Capilar , Proteínas de Transporte/genética , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Células Endoteliais/patologia , Predisposição Genética para Doença , Haploinsuficiência , Mediadores da Inflamação/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Transcrição NFATC/metabolismo , Proteína do Fator Nuclear 45/metabolismo , Fenótipo , Pneumonia/induzido quimicamente , Pneumonia/genética , Pneumonia/patologia , Interferência de RNA , Receptores de LDL/genética , Fatores de Tempo , Transfecção , Proteínas Supressoras de Tumor/genética
4.
Circ Res ; 116(7): 1120-32, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25608528

RESUMO

RATIONALE: Neointimal hyperplasia characterized by abnormal accumulation of vascular smooth muscle cells (SMCs) is a hallmark of occlusive disorders such as atherosclerosis, postangioplasty restenosis, vein graft stenosis, and allograft vasculopathy. Cyclic nucleotides are vital in SMC proliferation and migration, which are regulated by cyclic nucleotide phosphodiesterases (PDEs). OBJECTIVE: Our goal is to understand the regulation and function of PDEs in SMC pathogenesis of vascular diseases. METHODS AND RESULTS: We performed screening for genes differentially expressed in normal contractile versus proliferating synthetic SMCs. We observed that PDE1C expression was low in contractile SMCs but drastically elevated in synthetic SMCs in vitro and in various mouse vascular injury models in vivo. In addition, PDE1C was highly induced in neointimal SMCs of human coronary arteries. More importantly, injury-induced neointimal formation was significantly attenuated by PDE1C deficiency or PDE1 inhibition in vivo. PDE1 inhibition suppressed vascular remodeling of human saphenous vein explants ex vivo. In cultured SMCs, PDE1C deficiency or PDE1 inhibition attenuated SMC proliferation and migration. Mechanistic studies revealed that PDE1C plays a critical role in regulating the stability of growth factor receptors, such as PDGF receptor ß (PDGFRß) known to be important in pathological vascular remodeling. PDE1C interacts with low-density lipoprotein receptor-related protein-1 and PDGFRß, thus regulating PDGFRß endocytosis and lysosome-dependent degradation in an low-density lipoprotein receptor-related protein-1-dependent manner. A transmembrane adenylyl cyclase cAMP-dependent protein kinase cascade modulated by PDE1C is critical in regulating PDGFRß degradation. CONCLUSIONS: These findings demonstrated that PDE1C is an important regulator of SMC proliferation, migration, and neointimal hyperplasia, in part through modulating endosome/lysosome-dependent PDGFRß protein degradation via low-density lipoprotein receptor-related protein-1.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 1/fisiologia , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/enzimologia , Neointima/enzimologia , Animais , Lesões das Artérias Carótidas/enzimologia , Lesões das Artérias Carótidas/patologia , Divisão Celular , Movimento Celular , Células Cultivadas , AMP Cíclico/fisiologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 1/antagonistas & inibidores , Nucleotídeo Cíclico Fosfodiesterase do Tipo 1/deficiência , Endocitose/fisiologia , Indução Enzimática , Humanos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Lisossomos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Miócitos de Músculo Liso/citologia , Neointima/fisiopatologia , Mapeamento de Interação de Proteínas , Estabilidade Proteica , Proteólise , Interferência de RNA , Ratos , Ratos Sprague-Dawley , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais/fisiologia
5.
Arterioscler Thromb Vasc Biol ; 36(2): 350-60, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26634655

RESUMO

OBJECTIVE: We recently demonstrated that low-density lipoprotein receptor-related protein 1 (LRP1) is required for cardiovascular development in zebrafish. However, what role LRP1 plays in angiogenesis remains to be determined. To better understand the role of LRP1 in endothelial cell function, we investigated how LRP1 regulates mouse retinal angiogenesis. APPROACH AND RESULTS: Depletion of LRP1 in endothelial cells results in increased retinal neovascularization in a mouse model of oxygen-induced retinopathy. Specifically, retinas in mice lacking endothelial LRP1 have more branching points and angiogenic sprouts at the leading edge of the newly formed vasculature. Increased endothelial proliferation as detected by Ki67 staining was observed in LRP1-deleted retinal endothelium in response to hypoxia. Using an array of biochemical and cell biology approaches, we demonstrate that poly(ADP-ribose) polymerase-1 (PARP-1) directly interacts with LRP1 in human retinal microvascular endothelial cells. This interaction between LRP1 and PARP-1 decreases under hypoxic condition. Moreover, LRP1 knockdown results in increased PARP-1 activity and subsequent phosphorylation of both retinoblastoma protein and cyclin-dependent kinase 2, which function to promote cell cycle progression and angiogenesis. CONCLUSIONS: Together, these data reveal a pivotal role for LRP1 in endothelial cell proliferation and retinal neovascularization induced by hypoxia. In addition, we demonstrate for the first time the interaction between LRP1 and PARP-1 and the LRP1-dependent regulation of PARP-1-signaling pathways. These data bring forth the possibility of novel therapeutic approaches for pathological angiogenesis.


Assuntos
Proliferação de Células , Células Endoteliais/enzimologia , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Receptores de LDL/metabolismo , Neovascularização Retiniana/enzimologia , Vasos Retinianos/enzimologia , Proteínas Supressoras de Tumor/metabolismo , Animais , Ciclo Celular , Hipóxia Celular , Quinase 2 Dependente de Ciclina/metabolismo , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Genótipo , Células HEK293 , Humanos , Hipóxia/complicações , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Camundongos Knockout , Fenótipo , Fosforilação , Poli(ADP-Ribose) Polimerase-1 , Interferência de RNA , Receptores de LDL/deficiência , Receptores de LDL/genética , Neovascularização Retiniana/etiologia , Neovascularização Retiniana/genética , Neovascularização Retiniana/patologia , Vasos Retinianos/patologia , Proteína do Retinoblastoma/metabolismo , Transdução de Sinais , Fatores de Tempo , Transfecção , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética
6.
J Mol Cell Cardiol ; 80: 156-65, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25633836

RESUMO

PHD3, a member of a family of Prolyl-4 Hydroxylase Domain (PHD) proteins, has long been considered a pro-apoptotic protein. Although the pro-apoptotic effect of PHD3 requires its prolyl hydroxylase activity, it may be independent of HIF-1α, the common substrate of PHDs. PHD3 is highly expressed in the heart, however, its role in cardiomyocyte apoptosis remains unclear. This study was undertaken to determine whether inhibition or depletion of PHD3 inhibits cardiomyocyte apoptosis and attenuates myocardial injury induced by ischemia-reperfusion (I/R). PHD3 knockout mice and littermate controls were subjected to left anterior descending (LAD) coronary artery ligation for 40 min followed by reperfusion. Histochemical analysis using Evan's Blue, triphenyl-tetrazolium chloride and TUNEL staining, demonstrated that myocardial injury and cardiomyocyte apoptosis induced I/R injury were significantly attenuated in PHD3 knockout mice. PHD3 knockout mice exhibited no changes in HIF-1α protein level, the expression of some HIF target genes or the myocardium capillary density at physiological condition. However, depletion of PHD3 further enhanced the induction of HIF-1α protein at hypoxic condition and increased expression of HIF-1α inhibited cardiomyocyte apoptosis induced by hypoxia. In addition, it has been demonstrated that PHD3 plays an important role in ATR/Chk1/p53 pathway. Consistently, a prolyl hydroxylase inhibitor or depletion of PHD3 significantly inhibits the activation of Chk1 and p53 in cardiomyocytes and the subsequent apoptosis induced by doxorubicin, hydrogen peroxide or hypoxia/reoxygenation. Taken together, these data suggest that depletion of PHD3 leads to increased stabilization of HIF-1α and inhibition of DNA damage response, both of which may contribute to the cardioprotective effect seen with depletion of PHD3.


Assuntos
Apoptose/genética , Traumatismo por Reperfusão Miocárdica/genética , Miócitos Cardíacos/metabolismo , Pró-Colágeno-Prolina Dioxigenase/genética , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Linhagem Celular , Dano ao DNA/efeitos dos fármacos , Modelos Animais de Doenças , Doxorrubicina/farmacologia , Expressão Gênica , Genótipo , Hipóxia/genética , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos , Camundongos Knockout , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Ratos
7.
Dev Biol ; 395(1): 111-9, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25173872

RESUMO

The establishment of the coronary circulation is one of the final critical steps during heart development. Despite decades of research, our understanding of how the coronary vasculature develops and connects to the aorta remains limited. This review serves two specific purposes: it addresses recent advances in understanding the origin of the coronary endothelium, and it then focuses on the last crucial step of coronary vasculature development, the connection of the coronary plexus to the aorta. The chick and quail animal models have yielded most of the information for how these connections form, starting with a fine network of vessels that penetrate the aorta and coalesce to form two distinct ostia. Studies in mouse and rat confirm that at least some of these steps are conserved in mammals, but gaps still exist in our understanding of mammalian coronary ostia formation. The signaling cues necessary to guide the coronary plexus to the aorta are also incompletely understood. Hypoxia-inducible transcription factor-1 and its downstream targets are among the few identified genes that promote the formation of the coronary stems. Together, this review summarizes our current knowledge of coronary vascular formation and highlights the significant gaps that remain. In addition, it highlights some of the coronary artery anomalies known to affect human health, demonstrating that even seemingly subtle defects arising from incorrect coronary plexus formation can result in significant health crises.


Assuntos
Vasos Coronários/embriologia , Endotélio Vascular/embriologia , Coração/embriologia , Modelos Anatômicos , Modelos Cardiovasculares , Animais , Vasos Coronários/citologia , Vasos Coronários/metabolismo , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Coração/anatomia & histologia , Humanos , Células-Tronco/citologia , Células-Tronco/metabolismo
9.
Arterioscler Thromb Vasc Biol ; 34(9): 2023-32, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24990230

RESUMO

OBJECTIVE: Reactive oxygen species (ROS) act as signaling molecules during angiogenesis; however, the mechanisms used for such signaling events remain unclear. Stromal cell-derived factor-1α (SDF-1α) is one of the most potent angiogenic chemokines. Here, we examined the role of ROS in the regulation of SDF-1α-dependent angiogenesis. APPROACH AND RESULTS: Bovine aortic endothelial cells were treated with SDF-1α, and intracellular ROS generation was monitored. SDF-1α treatment induced bovine aortic endothelial cell migration and ROS generation, with the majority of ROS generated by bovine aortic endothelial cells at the leading edge of the migratory cells. Antioxidants and nicotinamide adenine dinucleotide phosphate oxidase (NOX) inhibitors blocked SDF-1α-induced endothelial migration. Furthermore, knockdown of either NOX5 or p22phox (a requisite subunit for NOX1/2/4 activation) significantly impaired endothelial motility and tube formation, suggesting that multiple NOXs regulate SDF-1α-dependent angiogenesis. Our previous study demonstrated that c-Jun N-terminal kinase 3 activity is essential for SDF-1α-dependent angiogenesis. Here, we identified that NOX5 is the dominant NOX required for SDF-1α-induced c-Jun N-terminal kinase 3 activation and that NOX5 and MAP kinase phosphatase 7 (MKP7; the c-Jun N-terminal kinase 3 phosphatase) associate with one another but decrease this interaction on SDF-1α treatment. Furthermore, MKP7 activity was inhibited by SDF-1α, and this inhibition was relieved by NOX5 knockdown, indicating that NOX5 promotes c-Jun N-terminal kinase 3 activation by blocking MKP7 activity. CONCLUSIONS: We conclude that NOX is required for SDF-1α signaling and that intracellular redox balance is critical for SDF-1α-induced endothelial migration and angiogenesis.


Assuntos
Quimiocina CXCL12/fisiologia , Proteínas de Membrana/fisiologia , NADPH Oxidases/fisiologia , Neovascularização Fisiológica/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Acetilcisteína/farmacologia , Animais , Antioxidantes/farmacologia , Aorta , Azóis/farmacologia , Bovinos , Movimento Celular/efeitos dos fármacos , Quimiocina CXCL12/farmacologia , Fosfatases de Especificidade Dupla/fisiologia , Células Endoteliais/efeitos dos fármacos , Endotélio Vascular/citologia , Técnicas de Silenciamento de Genes , Hiperglicemia/metabolismo , Isoenzimas/antagonistas & inibidores , Isoenzimas/genética , Isoenzimas/fisiologia , Isoindóis , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Proteína Quinase 10 Ativada por Mitógeno/fisiologia , Fosfatases da Proteína Quinase Ativada por Mitógeno/fisiologia , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/genética , Neovascularização Fisiológica/efeitos dos fármacos , Compostos Organosselênicos/farmacologia , Oxirredução , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
10.
Circ Res ; 111(5): 564-74, 2012 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-22777006

RESUMO

RATIONALE: Among the extracellular modulators of Bmp (bone morphogenetic protein) signaling, Bmper (Bmp endothelial cell precursor-derived regulator) both enhances and inhibits Bmp signaling. Recently we found that Bmper modulates Bmp4 activity via a concentration-dependent, endocytic trap-and-sink mechanism. OBJECTIVE: To investigate the molecular mechanisms required for endocytosis of the Bmper/Bmp4 and signaling complex and determine the mechanism of Bmper's differential effects on Bmp4 signaling. METHODS AND RESULTS: Using an array of biochemical and cell biology techniques, we report that LRP1 (LDL receptor-related protein 1), a member of the LDL receptor family, acts as an endocytic receptor for Bmper and a coreceptor of Bmp4 to mediate the endocytosis of the Bmper/Bmp4 signaling complex. Furthermore, we demonstrate that LRP1-dependent Bmper/Bmp4 endocytosis is essential for Bmp4 signaling, as evidenced by the phenotype of lrp1-deficient zebrafish, which have abnormal cardiovascular development and decreased Smad1/5/8 activity in key vasculogenic structures. CONCLUSIONS: Together, these data reveal a novel role for LRP1 in the regulation of Bmp4 signaling by regulating receptor complex endocytosis. In addition, these data introduce LRP1 as a critical regulator of vascular development. These observations demonstrate Bmper's ability to fine-tune Bmp4 signaling at the single-cell level, unlike the spatial regulatory mechanisms applied by other Bmp modulators.


Assuntos
Proteína Morfogenética Óssea 4/metabolismo , Proteínas de Transporte/metabolismo , Endocitose/fisiologia , Células Endoteliais/fisiologia , Neovascularização Fisiológica/fisiologia , Receptores de LDL/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Proteína Morfogenética Óssea 4/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Proteínas de Transporte/genética , Linhagem Celular , Movimento Celular/fisiologia , Células Endoteliais/citologia , Células HEK293 , Humanos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Camundongos , Fenótipo , RNA Interferente Pequeno/genética , Receptores de LDL/genética , Transdução de Sinais/fisiologia , Proteínas Supressoras de Tumor/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
11.
Nat Cardiovasc Res ; 3(7): 785-798, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39196179

RESUMO

Vascular remodeling to match arterial diameter to tissue requirements commonly fails in ischemic disease. Endothelial cells sense fluid shear stress (FSS) from blood flow to maintain FSS within a narrow range in healthy vessels. Thus, high FSS induces vessel outward remodeling, but mechanisms are poorly understood. We previously reported that Smad1/5 is maximally activated at physiological FSS. Smad1/5 limits Akt activation, suggesting that inhibiting Smad1/5 may facilitate outward remodeling. Here we report that high FSS suppresses Smad1/5 by elevating KLF2, which induces the bone morphogenetic protein (BMP) pathway inhibitor, BMP-binding endothelial regulator (BMPER), thereby de-inhibiting Akt. In mice, surgically induced high FSS elevated BMPER expression, inactivated Smad1/5 and induced vessel outward remodeling. Endothelial BMPER deletion impaired blood flow recovery and vascular remodeling. Blocking endothelial cell Smad1/5 activation with BMP9/10 blocking antibodies improved vascular remodeling in mouse models of type 1 and type 2 diabetes. Suppression of Smad1/5 is thus a potential therapeutic approach for ischemic disease.


Assuntos
Fatores de Transcrição Kruppel-Like , Proteína Smad1 , Proteína Smad5 , Remodelação Vascular , Animais , Proteína Smad5/metabolismo , Proteína Smad5/genética , Proteína Smad1/metabolismo , Proteína Smad1/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Remodelação Vascular/fisiologia , Humanos , Estresse Mecânico , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Masculino , Células Endoteliais/metabolismo , Células Endoteliais da Veia Umbilical Humana , Camundongos Knockout , Proteínas Proto-Oncogênicas c-akt/metabolismo , Mecanotransdução Celular , Células Cultivadas , Transdução de Sinais
12.
Arterioscler Thromb Vasc Biol ; 32(9): 2214-22, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22772758

RESUMO

OBJECTIVE: Bone morphogenetic proteins (Bmps) are important mediators of inflammation and atherosclerosis, though their mechanism of action is not fully understood. To better understand the contribution of the Bmp signaling pathway in vascular inflammation, we investigated the role of Bmper (Bmp endothelial cell precursor-derived regulator), an extracellular Bmp modulator, in an induced in vivo model of inflammation and atherosclerosis. METHODS AND RESULTS: We crossed apolipoprotein E-deficient (ApoE(-/-)) mice with mice missing 1 allele of Bmper (Bmper(+/-) mice used in the place of Bmper(-/-) mice that die at birth) and measured the development of atherosclerosis in mice fed a high-fat diet. Bmper haploinsufficiency in ApoE(-/-) mice (Bmper(+/-);ApoE(-/-) mice) led to a more severe phenotype compared with Bmper(+/+);ApoE(-/-) mice. Bmper(+/-);ApoE(-/-) mice also exhibited increased Bmp activity in the endothelial cells in both the greater and lesser curvatures of the aortic arch, suggesting a role for Bmper in regulating Bmp-mediated inflammation associated with laminar and oscillatory shear stress. Small interfering RNA knockdown of Bmper in human umbilical vein endothelial cells caused a dramatic increase in the inflammatory markers intracellular adhesion molecule 1 and vascular cell adhesion molecule 1 at rest and after exposure to oscillatory and laminar shear stress. CONCLUSIONS: We conclude that Bmper is a critical regulator of Bmp-mediated vascular inflammation and that the fine-tuning of Bmp and Bmper levels is essential in the maintenance of normal vascular homeostasis.


Assuntos
Doenças da Aorta/prevenção & controle , Aterosclerose/prevenção & controle , Proteínas de Transporte/metabolismo , Moléculas de Adesão Celular/metabolismo , Células Endoteliais/metabolismo , Mediadores da Inflamação/metabolismo , Inflamação/prevenção & controle , Animais , Doenças da Aorta/genética , Doenças da Aorta/imunologia , Doenças da Aorta/metabolismo , Doenças da Aorta/patologia , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Aterosclerose/genética , Aterosclerose/imunologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Proteína Morfogenética Óssea 4/metabolismo , Proteínas de Transporte/genética , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/imunologia , Células Endoteliais/patologia , Genótipo , Células Endoteliais da Veia Umbilical Humana/imunologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Molécula 1 de Adesão Intercelular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Interferência de RNA , Proteínas Recombinantes/metabolismo , Estresse Mecânico , Fatores de Tempo , Transfecção , Calcificação Vascular/imunologia , Calcificação Vascular/metabolismo , Calcificação Vascular/prevenção & controle , Molécula 1 de Adesão de Célula Vascular/metabolismo
13.
Nat Metab ; 5(8): 1382-1394, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37443356

RESUMO

Chronic inflammation is associated with increased risk and poor prognosis of heart failure; however, the precise mechanism that provokes sustained inflammation in the failing heart remains elusive. Here we report that depletion of carnitine acetyltransferase (CRAT) promotes cholesterol catabolism through bile acid synthesis pathway in cardiomyocytes. Intracellular accumulation of bile acid or intermediate, 7α-hydroxyl-3-oxo-4-cholestenoic acid, induces mitochondrial DNA stress and triggers cGAS-STING-dependent type I interferon responses. Furthermore, type I interferon responses elicited by CRAT deficiency substantially increase AIM2 expression and AIM2-dependent inflammasome activation. Genetic deletion of cardiomyocyte CRAT in mice of both sexes results in myocardial inflammation and dilated cardiomyopathy, which can be reversed by combined depletion of caspase-1, cGAS or AIM2. Collectively, we identify a mechanism by which cardiac energy metabolism, cholesterol homeostasis and cardiomyocyte-intrinsic innate immune responses are interconnected via a CRAT-mediated bile acid synthesis pathway, which contributes to chronic myocardial inflammation and heart failure progression.


Assuntos
Carnitina O-Acetiltransferase , Insuficiência Cardíaca , Animais , Feminino , Masculino , Camundongos , Carnitina O-Acetiltransferase/genética , Carnitina O-Acetiltransferase/metabolismo , Colesterol , Imunidade Inata , Inflamação , Interferon Tipo I , Nucleotidiltransferases/metabolismo
14.
Arterioscler Thromb Vasc Biol ; 31(2): 306-12, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21071685

RESUMO

OBJECTIVE: To investigate the role of recombinant human interleukin-11 (rhIL-11) on in vivo mobilization of CD34(+)/vascular endothelial growth factor receptor (VEGFR) 2(+) mononuclear cells and collateral vessel remodeling in a mouse model of hindlimb ischemia. METHODS AND RESULTS: We observed that treatment of Sv129 mice with continuous infusion of 200-µg/kg rhIL-11 per day led to in vivo mobilization of CD34(+)/VEGFR2(+) cells that peaked at 72 hours. Sv129 mice pretreated with rhIL-11 for 72 hours before femoral artery ligation showed a 3-fold increase in plantar vessel perfusion, leading to faster blood flow recovery; and a 20-fold increase in circulating CD34(+)/VEGFR2(+) cells after 8 days of rhIL-11 treatment. Histologically, experimental mice had a 3-fold increase in collateral vessel luminal diameter after 21 days of rhIL-11 treatment and a 4.4-fold influx of perivascular CD34(+)/VEGFR2(+) cells after 8 days of therapy. Functionally, rhIL-11-treated mice showed better hindlimb appearance and use scores when compared with syngeneic mice treated with PBS under the same experimental conditions. CONCLUSIONS: These novel findings show that rhIL-11 promotes in vivo mobilization of CD34(+)/VEGFR2(+) mononuclear cells, enhances collateral vessel growth, and increases recovery of perfusion after femoral artery ligation. Thus, rhIL-11 has a promising role for development as an adjunctive treatment of patients with peripheral vascular disease.


Assuntos
Artéria Femoral/efeitos dos fármacos , Artéria Femoral/crescimento & desenvolvimento , Membro Posterior/irrigação sanguínea , Interleucina-11/farmacologia , Isquemia/metabolismo , Proteínas Recombinantes/farmacologia , Animais , Antígenos CD34/metabolismo , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Células Cultivadas , Modelos Animais de Doenças , Artéria Femoral/citologia , Humanos , Isquemia/patologia , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Ligadura , Camundongos , Neovascularização Fisiológica/fisiologia , Fator de Transcrição STAT3/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
15.
Proc Natl Acad Sci U S A ; 106(14): 5675-80, 2009 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-19307591

RESUMO

The chemokine stromal cell-derived factor-1alpha (SDF-1alpha) is a pivotal player in angiogenesis. It is capable of influencing such cellular processes as tubulogenesis and endothelial cell migration, yet very little is known about the actual signaling events that mediate SDF-1alpha-induced endothelial cell function. In this report, we describe the identification of an intricate SDF-1alpha-induced signaling cascade that involves endothelial nitric oxide synthase (eNOS), JNK3, and MAPK phosphatase 7 (MKP7). We demonstrate that the SDF-1alpha-induced activation of JNK3, critical for endothelial cell migration, depends on the prior activation of eNOS. Specifically, activation of eNOS leads to production of NO and subsequent nitrosylation of MKP7, rendering the phosphatase inactive and unable to inhibit the activation of JNK3. These observations reinforce the importance of nitric oxide and S-nitrosylation in angiogenesis and provide a mechanistic pathway for SDF-1alpha-induced endothelial cell migration. In addition, the discovery of this interactive network of pathways provides novel and unexpected therapeutic targets for angiogenesis-dependent diseases.


Assuntos
Movimento Celular , Quimiocina CXCL12/fisiologia , Fosfatases de Especificidade Dupla/metabolismo , Endotélio Vascular/citologia , Proteína Quinase 10 Ativada por Mitógeno/metabolismo , Fosfatases da Proteína Quinase Ativada por Mitógeno/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Animais , Bovinos , Células Cultivadas , Células Endoteliais , Humanos , Transdução de Sinais
16.
STAR Protoc ; 3(2): 101392, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35600933

RESUMO

Metabolic switches play a critical role in the pathophysiology of cardiac diseases, including heart failure. Here, we describe an assay for long-chain fatty acid oxidation in neonatal mouse cardiomyocytes by using a SeaHorse Flux Analyzer (Agilent). This protocol is a simplified but robust adaptation of the standard protocol that enables metabolic measurements in cells isolated from transgenic mouse models, which can be timesaving and informative. Cell isolation and culture represent a critical point that may require bench optimization. For complete details on the use and execution of this protocol, please refer to Angelini et al. (2021).


Assuntos
Miócitos Cardíacos , Smegmamorpha , Animais , Animais Recém-Nascidos , Ácidos Graxos , Camundongos , Respiração
17.
Cell Biochem Funct ; 29(4): 334-41, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21506136

RESUMO

During vascular development, endothelial cells are exposed to a variety of rapidly changing factors, including fluctuating oxygen levels. We have previously shown that ankyrin repeat and suppressor of cytokine signalling box protein 4 (ASB4) is the most highly differentially expressed gene in the vascular lineage during early differentiation and is expressed in the embryonic vasculature at a time when oxygen tension is rising because of the onset of placental blood flow. To further our understanding of the regulation of ASB4 expression in endothelial cells, we tested the effect of various stressors for their ability to alter ASB4 expression in the immortalized murine endothelial cell lines MS1 and SVR. ASB4 expression is decreased during hypoxic insult and shear stress, whereas it is increased in response to tumour necrosis factor alpha (TNF-α). Further investigation indicated that nuclear factor kappa B (NF-κB) is the responsible transcription factor involved in the TNF-α-induced upregulation of ASB4, placing ASB4 downstream of NF-κB in the TNF-α signalling cascade and identifying it as a potential regulator for TNF-α's numerous functions associated with inflammation, angiogenesis and apoptosis.


Assuntos
Endotélio Vascular/metabolismo , Oxigênio/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Linhagem Celular Transformada , Regulação da Expressão Gênica no Desenvolvimento , Hipóxia/metabolismo , Camundongos , NF-kappa B/metabolismo , Transdução de Sinais , Estresse Mecânico , Transfecção
18.
Cell Rep ; 37(1): 109767, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34610308

RESUMO

Cardiac metabolism is a high-oxygen-consuming process, showing a preference for long-chain fatty acid (LCFA) as the fuel source under physiological conditions. However, a metabolic switch (favoring glucose instead of LCFA) is commonly reported in ischemic or late-stage failing hearts. The mechanism regulating this metabolic switch remains poorly understood. Here, we report that loss of PHD2/3, the cellular oxygen sensors, blocks LCFA mitochondria uptake and ß-oxidation in cardiomyocytes. In high-fat-fed mice, PHD2/3 deficiency improves glucose metabolism but exacerbates the cardiac defects. Mechanistically, we find that PHD2/3 bind to CPT1B, a key enzyme of mitochondrial LCFA uptake, promoting CPT1B-P295 hydroxylation. Further, we show that CPT1B-P295 hydroxylation is indispensable for its interaction with VDAC1 and LCFA ß-oxidation. Finally, we demonstrate that a CPT1B-P295A mutant constitutively binds to VDAC1 and rescues LCFA metabolism in PHD2/3-deficient cardiomyocytes. Together, our data identify an oxygen-sensitive regulatory axis involved in cardiac metabolism.


Assuntos
Carnitina O-Palmitoiltransferase/metabolismo , Ácidos Graxos/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Animais , Carnitina/metabolismo , Carnitina O-Palmitoiltransferase/deficiência , Carnitina O-Palmitoiltransferase/genética , Dieta Hiperlipídica , Ácidos Graxos/química , Glucose/metabolismo , Hidroxilação , Prolina Dioxigenases do Fator Induzível por Hipóxia/deficiência , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Peroxidação de Lipídeos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Mutagênese Sítio-Dirigida , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Pró-Colágeno-Prolina Dioxigenase/deficiência , Pró-Colágeno-Prolina Dioxigenase/genética , Ligação Proteica , Canal de Ânion 1 Dependente de Voltagem/genética
19.
Nat Commun ; 12(1): 1927, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33772019

RESUMO

Accumulating evidence suggests that chronic inflammation of metabolic tissues plays a causal role in obesity-induced insulin resistance. Yet, how specific endothelial factors impact metabolic tissues remains undefined. Bone morphogenetic protein (BMP)-binding endothelial regulator (BMPER) adapts endothelial cells to inflammatory stress in diverse organ microenvironments. Here, we demonstrate that BMPER is a driver of insulin sensitivity. Both global and endothelial cell-specific inducible knockout of BMPER cause hyperinsulinemia, glucose intolerance and insulin resistance without increasing inflammation in metabolic tissues in mice. BMPER can directly activate insulin signaling, which requires its internalization and interaction with Niemann-Pick C1 (NPC1), an integral membrane protein that transports intracellular cholesterol. These results suggest that the endocrine function of the vascular endothelium maintains glucose homeostasis. Of potential translational significance, the delivery of BMPER recombinant protein or its overexpression alleviates insulin resistance and hyperglycemia in high-fat diet-fed mice and Leprdb/db (db/db) diabetic mice. We conclude that BMPER exhibits therapeutic potential for the treatment of diabetes.


Assuntos
Proteínas de Transporte/genética , Endotélio Vascular/metabolismo , Resistência à Insulina/genética , Transdução de Sinais/genética , Animais , Glicemia/metabolismo , Proteínas de Transporte/metabolismo , Células Cultivadas , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Intolerância à Glucose/genética , Células HEK293 , Humanos , Hiperinsulinismo/genética , Hiperinsulinismo/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína C1 de Niemann-Pick/genética , Proteína C1 de Niemann-Pick/metabolismo , Receptores para Leptina/genética , Receptores para Leptina/metabolismo
20.
Nat Commun ; 12(1): 5296, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34489478

RESUMO

The vascular endothelium is present within metabolic organs and actively regulates energy metabolism. Here we show osteocalcin, recognized as a bone-secreted metabolic hormone, is expressed in mouse primary endothelial cells isolated from heart, lung and liver. In human osteocalcin promoter-driven green fluorescent protein transgenic mice, green fluorescent protein signals are enriched in endothelial cells lining aorta, small vessels and capillaries and abundant in aorta, skeletal muscle and eye of adult mice. The depletion of lipoprotein receptor-related protein 1 induces osteocalcin through a Forkhead box O -dependent pathway in endothelial cells. Whereas depletion of osteocalcin abolishes the glucose-lowering effect of low-density lipoprotein receptor-related protein 1 depletion, osteocalcin treatment normalizes hyperglycemia in multiple mouse models. Mechanistically, osteocalcin receptor-G protein-coupled receptor family C group 6 member A and insulin-like-growth-factor-1 receptor are in the same complex with osteocalcin and required for osteocalcin-promoted insulin signaling pathway. Therefore, our results reveal an endocrine/paracrine role of endothelial cells in regulating insulin sensitivity, which may have therapeutic implications in treating diabetes and insulin resistance through manipulating vascular endothelium.


Assuntos
Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Glucose/metabolismo , Hiperglicemia/genética , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Osteocalcina/genética , Animais , Células Endoteliais/patologia , Endotélio Vascular/patologia , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Regulação da Expressão Gênica , Genes Reporter , Teste de Tolerância a Glucose , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Hiperglicemia/metabolismo , Hiperglicemia/patologia , Insulina/metabolismo , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/deficiência , Masculino , Camundongos , Camundongos Knockout , Osteoblastos/metabolismo , Osteoblastos/patologia , Osteocalcina/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA