Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 68(4): e0165123, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38412000

RESUMO

Organic and synthetic chemistry plays a crucial role in drug discovery fields. Moreover, chemical modifications of available molecules to enhance their efficacy, selectivity and safety have been considered as an attractive approach for the development of new bioactive agents. Indoles, a versatile group of natural heterocyclic compounds, have been widely used in pharmaceutical industry due to their broad spectrum of activities including antimicrobial, antitumoral and anti-inflammatory among others. Herein, we report the amoebicidal activity of different indole analogs on Acanthamoeba castellanii Neff. Among the 40 tested derivatives, eight molecules were able to inhibit this protistan parasite. The structure-activity relationship (SAR) analysis of their anti-Acanthamoeba activity would suggest that a carboxylation of C-3 position and the incorporation of halogen as chlorine/fluorine would enhance their biological profile, presumably by increasing their lipophilicity and therefore their ability to cross the cell membrane. Fluorescence image base system was used to investigate the effect of indole 6o c-6 on the cytoskeleton network and various programmed cell death features. We were able to highlight that the methyl 6-chloro-1H-indole-3-carboxylate could induce program cell death by the mitochondrial dysfunction.


Assuntos
Acanthamoeba castellanii , Amebicidas , Amebicidas/farmacologia , Morte Celular , Apoptose , Indóis/farmacologia
2.
Mar Drugs ; 21(6)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37367658

RESUMO

Among neglected tropical diseases, leishmaniasis is one of the leading causes, not only of deaths but also of disability-adjusted life years. This disease, caused by protozoan parasites of the genus Leishmania, triggers different clinical manifestations, with cutaneous, mucocutaneous, and visceral forms. As existing treatments for this parasitosis are not sufficiently effective or safe for the patient, in this work, different sesquiterpenes isolated from the red alga Laurencia johnstonii have been studied for this purpose. The different compounds were tested in vitro against the promastigote and amastigote forms of Leishmania amazonensis. Different assays were also performed, including the measurement of mitochondrial potential, determination of ROS accumulation, and chromatin condensation, among others, focused on the detection of the cell death process known in this type of organism as apoptosis-like. Five compounds were identified that displayed leishmanicidal activity: laurequinone, laurinterol, debromolaurinterol, isolaurinterol, and aplysin, showing IC50 values against promastigotes of 1.87, 34.45, 12.48, 10.09, and 54.13 µM, respectively. Laurequinone was the most potent compound tested and was shown to be more effective than the reference drug miltefosine against promastigotes. Different death mechanism studies carried out showed that laurequinone appears to induce programmed cell death or apoptosis in the parasite studied. The obtained results underline the potential of this sesquiterpene as a novel anti-kinetoplastid therapeutic agent.


Assuntos
Antiprotozoários , Leishmania mexicana , Leishmania , Leishmaniose , Humanos , Animais , Camundongos , Leishmaniose/tratamento farmacológico , Pele , Extratos Vegetais/farmacologia , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Camundongos Endogâmicos BALB C
3.
Mar Drugs ; 21(4)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37103363

RESUMO

Naegleria fowleri is an opportunistic protozoon that can be found in warm water bodies. It is the causative agent of the primary amoebic meningoencephalitis. Focused on our interest to develop promising lead structures for the development of antiparasitic agents, this study was aimed at identifying new anti-Naegleria marine natural products from a collection of chamigrane-type sesquiterpenes with structural variety in the levels of saturation, halogenation and oxygenation isolated from Laurencia dendroidea. (+)-Elatol (1) was the most active compound against Naegleria fowleri trophozoites with IC50 values of 1.08 µM against the ATCC 30808™ strain and 1.14 µM against the ATCC 30215™ strain. Furthermore, the activity of (+)-elatol (1) against the resistant stage of N. fowleri was also assessed, showing great cysticidal properties with a very similar IC50 value (1.14 µM) to the one obtained for the trophozoite stage. Moreover, at low concentrations (+)-elatol (1) showed no toxic effect towards murine macrophages and could induce the appearance of different cellular events related to the programmed cell death, such as an increase of the plasma membrane permeability, reactive oxygen species overproduction, mitochondrial malfunction or chromatin condensation. Its enantiomer (-)-elatol (2) was shown to be 34-fold less potent with an IC50 of 36.77 µM and 38.03 µM. An analysis of the structure-activity relationship suggests that dehalogenation leads to a significant decrease of activity. The lipophilic character of these compounds is an essential property to cross the blood-brain barrier, therefore they represent interesting chemical scaffolds to develop new drugs.


Assuntos
Laurencia , Naegleria fowleri , Sesquiterpenos , Compostos de Espiro , Animais , Camundongos , Laurencia/química , Compostos de Espiro/farmacologia , Sesquiterpenos/farmacologia
4.
Bioorg Chem ; 119: 105551, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34915284

RESUMO

Oxidative stress is linked to several invasive diseases which causes significant clinical and economic impact, therefore, there is a need to develop new antioxidants. The natural products could play an important role in overcoming the current need. In the present work, the antioxidant bioassay-guided fractionation of the ethanolic extract of Inula viscosa leaves (Asteraceae) was performed using DPPH and ABTS assays affording three known compounds, which were successfully characterized as ilicic acid (1), taxifolin (2) and quercetin (3) based on 1D, 2D NMR. Compounds 2 and 3 were identified as the most active, displaying similar or higher potency against ABTS (value 41.27 for quercetin and 142.58 for taxifolin) and similar activity against DPPH (value 41.27 for quercetin and 142.58 for taxifolin) than the well-known reference, ascorbic acid (value 65.36 for quercetin and 58.43 for taxifolin) but less potency than the standard gallic acid. The discussion of SAR of the antioxidant potential revealed that the type of natural product is crucial for the activity and the substitution pattern on the flavonoid skeleton modulate the antioxidant profile. Our findings show that I. viscosa leaves may be a natural source of antioxidants and once again the role of flavonoids health benefits is more strongly endorsed.


Assuntos
Antioxidantes/farmacologia , Inula/química , Extratos Vegetais/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Benzotiazóis/antagonistas & inibidores , Relação Dose-Resposta a Droga , Estrutura Molecular , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Folhas de Planta/química , Relação Estrutura-Atividade , Ácidos Sulfônicos/antagonistas & inibidores
5.
Bioorg Chem ; 124: 105872, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35597192

RESUMO

Leishmaniasis produces approximately-one million of new cases annually, making it one of the most important tropical diseases. As current treatments are not fully effective and are toxic, it is necessary to develop new therapies that are more effective and less toxic, and cause a controlled cell death, with which we can avoid the immunological problems caused by necrosis. In this work 32 acrylonitriles were studied in vitro against Leishmania amazonensis. Three compounds Q20 (12.41), Q29 (11.2) and Q31 (11.56) had better selectivity than the reference compound, miltefosine (11.14) against promastigotes of these parasites, for this reason they were selected to determine their mechanism of action to know the cell death type of they produce. The results of the mechanisms of action show that these three acrylonitriles tested produce chromatin condensation, decreased mitochondrial membrane potential, altered plasma permeability and production of reactive oxygen species. All these characteristic events seem to indicate programmed cell death. Therefore, this study demonstrates the activity of acrylonitriles derivatives as possible leishmanicidal agents.


Assuntos
Acrilonitrila , Antiprotozoários , Leishmania mexicana , Acrilonitrila/metabolismo , Acrilonitrila/farmacologia , Animais , Antiprotozoários/metabolismo , Morte Celular , Macrófagos , Camundongos , Camundongos Endogâmicos BALB C
6.
Parasitol Res ; 121(8): 2399-2404, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35660958

RESUMO

Free-living amoebae (FLA) are protozoa which have been reported in different countries worldwide from diverse sources (water, soil, dust, air), contributing to the environmental microbiological contamination. Most of the FLA species present a life cycle with two different phases: an active vegetative and physiologically form named trophozoite, and an extremely resistant phase called cyst. Acanthamoeba spp., Naegleria fowleri, Balamuthia mandrillaris, Sapinia pedata, Vahlkampfia spp., Paravahlkampfia spp. and Vermamoeba vermiformis have been reported not only as causal agents of several opportunistic diseases including fatal encephalitis or epithelial disorders, but also as capable to favour the intracellular survival of common pathogenic bacteria, which could avoid the typical water disinfection systems, non-effective against FLAs cysts. Even though Santiago Island possesses high levels of humidity compared to the rest of the archipelago of Cape Verde, the water resources are scarce. Therefore, it is important to carry out proper microbiological quality controls, which currently do not contemplate the FLA presence in most of the countries. In the present work, we have reported the presence of Acanthamoeba spp. (69.2%); Vannella spp. (15.4%); Vermamoeba vermiformis (7.7%) and the recently discovered Stenamoeba dejonckheerei (7.7%) in different water sources of Santiago Island.


Assuntos
Acanthamoeba , Amoeba , Lobosea , Cabo Verde , Água
7.
Artigo em Inglês | MEDLINE | ID: mdl-33753334

RESUMO

Leishmaniasis and Chagas are among the most significant neglected tropical diseases. Due to several drawbacks with the current chemotherapy, developing new antikinetoplastid drugs has become an urgent issue. In the present work, a bioassay-guided investigation of the root bark of Maytenus chiapensis on Leishmania amazonensis and Trypanosoma cruzi led to the identification of two D:A-friedo-nor-oleanane triterpenoids (celastroloids), 20ß-hydroxy-tingenone (celastroloid 5) and 3-O-methyl-6-oxo-tingenol (celastroloid 8), as promising antikinetoplastid leads. They displayed higher potency on L. amazonensis promastigotes (50% inhibitory concentrations [IC50s], 0.44 and 1.12 µM, respectively), intracellular amastigotes (IC50s, 0.83 and 1.91 µM, respectively), and T. cruzi epimastigote stage (IC50s, 2.61 and 3.41 µM, respectively) than reference drugs miltefosine and benznidazole. This potency was coupled with an excellent selectivity index on murine macrophages. Mechanism of action studies, including mitochondrial membrane potential (Δψm) and ATP-level analysis, revealed that celastroloids could induce apoptotic cell death in L. amazonensis triggered by the mitochondria. In addition, the structure-activity relationship is discussed. These findings strongly underline the potential of celastroloids as lead compounds to develop novel antikinetoplastid drugs.


Assuntos
Antiprotozoários , Leishmania mexicana , Leishmaniose , Maytenus , Trypanosoma cruzi , Animais , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Leishmaniose/tratamento farmacológico , Camundongos
8.
Artigo em Inglês | MEDLINE | ID: mdl-33229426

RESUMO

Pathogenic and opportunistic free-living amoebae such as Acanthamoeba spp. can cause keratitis (Acanthamoeba keratitis [AK]), which may ultimately lead to permanent visual impairment or blindness. Acanthamoeba can also cause rare but usually fatal granulomatous amoebic encephalitis (GAE). Current therapeutic options for AK require a lengthy treatment with nonspecific drugs that are often associated with adverse effects. Recent developments in the field led us to target cAMP pathways, specifically phosphodiesterase. Guided by computational tools, we targeted the Acanthamoeba phosphodiesterase RegA. Computational studies led to the construction and validation of a homology model followed by a virtual screening protocol guided by induced-fit docking and chemical scaffold analysis using our medicinal and biological chemistry (MBC) chemical library. Subsequently, 18 virtual screening hits were prioritized for further testing in vitro against Acanthamoeba castellanii, identifying amoebicidal hits containing piperidine and urea imidazole cores. Promising activities were confirmed in the resistant cyst form of the amoeba and in additional clinical Acanthamoeba strains, increasing their therapeutic potential. Mechanism-of-action studies revealed that these compounds produce apoptosis through reactive oxygen species (ROS)-mediated mitochondrial damage. These chemical families show promise for further optimization to produce effective antiacanthamoebal drugs.


Assuntos
Ceratite por Acanthamoeba , Acanthamoeba castellanii , Amebíase , Amebicidas , Encefalite Infecciosa , Ceratite por Acanthamoeba/tratamento farmacológico , Amebíase/tratamento farmacológico , Amebicidas/farmacologia , Humanos
9.
Bioorg Chem ; 110: 104784, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33684715

RESUMO

Primary Amoebic Encephalitis due to Naegleria fowleri species is a fatal infection of the Central Nervous System mostly affecting children and young adults. Infections often occur after performance of risk activities in aquatic habitats such as swimming and splashing. PAMs therapy remain a key issue to be solved which needs an urgent development. Recently, statins have been highlighted as possible novel compounds to treat PAM. Furthermore, type 2 statins due to improved pharmacological properties and lower toxicity could be use in the future. In the present work, three type 2 statins were checked for their activity against two type strains of N. fowleri. In addition, the effects at the cellular level triggered in treated amoebae were checked in order to evaluate if programmed cell death was induced. The obtained results showed that the tested statins, rosuvastatin, pitavastatin and cerivastatin were able to eliminate N. fowleri trophozoites and also induced PCD. Therefore, type 2 statins could be used in the near future for the treatment of PAM.


Assuntos
Apoptose/efeitos dos fármacos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Meningoencefalite/tratamento farmacológico , Naegleria fowleri/efeitos dos fármacos , Piridinas/farmacologia , Quinolinas/farmacologia , Rosuvastatina Cálcica/farmacologia , Animais , Linhagem Celular , Relação Dose-Resposta a Droga , Camundongos , Estrutura Molecular , Naegleria fowleri/crescimento & desenvolvimento , Relação Estrutura-Atividade
10.
Bioorg Chem ; 108: 104682, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33556696

RESUMO

Opportunistic parasitic protozoa of genus Acanthamoeba are responsible to cause severe infections in humans such as Acanthamoeba Keratitis or Amoebic Granulomatous Encephalitis. Current treatments are usually toxic and inefficient and there is a need to access new therapeutic agents. The antiamoebic effects of nephthediol (1) and fourteen germacranolide and eudesmanolide sesquiterpene lactones (2-5, 7-12) isolated from the indigenous zoanthid Palythoa aff. clavata collected at the coast of Lanzarote, Canary Islands were studied against Acanthamoeba castellanii Neff, and the clinical strains A. polyphaga and A. griffini. 4-epi-arbusculin A (11) presented the lowest IC50 value (26,47 ± 1,69 µM) against A. castellanii Neff and low cytotoxicity against murine macrophages, followed by isobadgerin (2), which also showed to be active against A. castellanii Neff cysts. The studies on the mode of action of compounds 2 and 11 revealed these sesquiterpene lactones induce mechanisms of PDC on A. castellanii Neff.


Assuntos
Acanthamoeba/efeitos dos fármacos , Antozoários/química , Antiprotozoários/farmacologia , Lactonas/farmacologia , Sesquiterpenos/farmacologia , Animais , Antiprotozoários/química , Antiprotozoários/isolamento & purificação , Relação Dose-Resposta a Droga , Lactonas/química , Lactonas/isolamento & purificação , Estrutura Molecular , Testes de Sensibilidade Parasitária , Sesquiterpenos/química , Sesquiterpenos/isolamento & purificação , Relação Estrutura-Atividade
11.
Parasitol Res ; 120(8): 3001-3005, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34251514

RESUMO

Efficacious treatments against Acanthamoeba Keratitis (AK) is challenging, often ineffective and linked to the intragenotype variation in the drug efficacy. Increased oxygen can facilitate host response and can inhibit some organisms. Herein, we report the effect of increased oxygen concentrations on Acanthamoeba spp. growth and its effect on ROS (reactive oxygen species) production. The exposition to pure oxygen could reduce cell growth by at least 60% for Acanthamoeba castellanii Neff, Acanthamoeba polyphaga, and Acanthamoeba griffini. The increase in ROS production confirming that oxygen cell's growth inhibition was due to oxidative stress. Further studies are needed to determine oxygen saturation level, time of oxygen exposition, and number of sessions needed to eliminate the parasite.


Assuntos
Acanthamoeba castellanii , Estresse Oxidativo , Oxigênio , Acanthamoeba castellanii/crescimento & desenvolvimento , Oxigênio/farmacologia , Espécies Reativas de Oxigênio
12.
Molecules ; 26(14)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34299627

RESUMO

Despite intensified efforts to develop an effective antibiotic, S. aureus is still a major cause of mortality and morbidity worldwide. The multidrug resistance of bacteria has considerably increased the difficulties of scientific research and the concomitant emergence of resistance is to be expected. In this study we have investigated the in vitro activity of 15 ethanol extracts prepared from Moroccan medicinal plants traditionally used for treatment of skin infections. Among the tested species I. viscosa, C. oxyacantha, R. tinctorum, A. herba alba, and B. hispanica showed moderate anti-staphylococcal activity. However, R. alaternus showed promising growth-inhibitory effects against specific pathogenic bacteria especially methicillin-susceptible Staphylococcus aureus Panton-Valentine leucocidin positive (MSSA-PVL) and methicillin-resistant S. aureus (MRSA). The bioguided fractionation of this plant using successive chromatographic separations followed by nuclear magnetic resonance (NMR) and mass spectrometry (MS) including EIMS and HREIMS analysis yielded the emodin (1) and kaempferol (2). Emodin being the most active with MICs ranging between 15.62 and 1.95 µg/mL and showing higher activity against the tested strains in comparison with the crude extract, its mechanism of action and the structure-activity relationship were interestingly discussed. The active compound has not displayed toxicity toward murine macrophage cells. The results obtained in the current study support the traditional uses of R. alaternus and suggest that this species could be a good source for the development of new anti-staphylococcal agents.


Assuntos
Antibacterianos , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Compostos Fitoquímicos , Rhamnus/química , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Toxinas Bacterianas , Exotoxinas , Leucocidinas , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia
13.
Bioorg Chem ; 99: 103791, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32247111

RESUMO

A collection of N-substituted quinolin-2(1H)-ones were screened against a panel of clinically relevant protozoa (Leishmania, Trypanosoma and Acanthamoeba). Three quinolin-2(1H)-one compounds were identified as selective anti-Acanthamoeba agents. Further assessment revealed that these compounds were active against both trophozoite and cyst forms of A. castellanii Neff, and caused protozoa death via apoptosis. The data presented herein identify N-acyl quinolin-2(1H)-ones as a promising new class of selective anti-Acanthamoeba agents.


Assuntos
Ceratite por Acanthamoeba/tratamento farmacológico , Acanthamoeba/efeitos dos fármacos , Antiprotozoários/farmacologia , Leishmania/efeitos dos fármacos , Quinolonas/farmacologia , Trypanosoma/efeitos dos fármacos , Acanthamoeba/isolamento & purificação , Antiprotozoários/síntese química , Antiprotozoários/química , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Leishmania/isolamento & purificação , Estrutura Molecular , Testes de Sensibilidade Parasitária , Quinolonas/síntese química , Quinolonas/química , Relação Estrutura-Atividade , Trypanosoma/isolamento & purificação
14.
Bioorg Chem ; 92: 103276, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31539745

RESUMO

Chagas disease and leishmaniasis are tropical neglected diseases caused by kinetoplastids protozoan parasites of Trypanosoma and Leishmania genera, and a public health burden with high morbidity and mortality rates in developing countries. Among difficulties with their epidemiological control, a major problem is their limited and toxic treatments to attend the affected populations; therefore, new therapies are needed in order to find new active molecules. In this work, sixteen Laurencia oxasqualenoid metabolites, natural compounds 1-11 and semisynthetic derivatives 12-16, were tested against Leishmania amazonensis, Leishmania donovani and Trypanosoma cruzi. The results obtained point out that eight substances possess potent activities, with IC50 values in the range of 5.40-46.45 µM. The antikinetoplastid action mode of the main metabolite dehydrothyrsiferol (1) was developed, also supported by AFM images. The semi-synthetic active compound 28-iodosaiyacenol B (15) showed an IC50 5.40 µM against Leishmania amazonensis, turned to be non-toxic against the murine macrophage cell line J774A.1 (CC50 > 100). These values are comparable with the reference compound miltefosine IC50 6.48 ±â€¯0.24 and CC50 72.19 ±â€¯3.06 µM, suggesting that this substance could be scaffold for development of new antikinetoplastid drugs.


Assuntos
Antiprotozoários/farmacologia , Éteres/farmacologia , Leishmania/efeitos dos fármacos , Triterpenos/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Antiprotozoários/síntese química , Antiprotozoários/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Éteres/síntese química , Éteres/química , Camundongos , Estrutura Molecular , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade , Triterpenos/síntese química , Triterpenos/química
15.
Exp Parasitol ; 197: 29-35, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30648558

RESUMO

Free-living amoebae of the genus Acanthamoeba are the etiological agents of cutaneous lesions, granulomatous amoebic encephalitis (GAE) and amoebic keratitis (AK), which are chronic infections with poor prognosis if not diagnosed promptly. Currently, there is no optimal therapeutic scheme to eradicate the pathologies these protozoa cause. In this study we report the morphological and molecular identification of three species of the genus Acanthamoeba, belonging to T4 group; A. polyphaga isolated from the corneal ulcer of a patient sample of AK case; A. castellanii isolated from the contact lens of an AK patient and A. palestinensis obtained from a soil sample. The in vitro activity of chlorhexidine, itraconazole and voriconazole drugs against trophic stage was also evaluated through a colorimetric assay based on the oxidation-reduction of alamar blue. The strains in the study were sensitive to the evaluated drugs; although when determining the 50% inhibitory concentration (IC50) statistically significant differences were observed. A. castellanii showed to be highly sensitive to voriconazole (0.66 ±â€¯0.13 µM) but the least sensitive to chlorhexidine and itraconazole (8.61 ±â€¯1.63 and 20.14 ±â€¯4.93 µM, respectively), A. palestinensis showed the highest sensitivity to itraconazole (0.502 ±â€¯0.11 µM) and A. polyphaga expressed moderate sensitivity to chlorhexidine and itraconazole and lower sensitivity to voriconazole (10.10 ±â€¯2.21 µM). These results showed that species of the genus Acanthamoeba express different sensitivity to the tested drugs, which could explain the problems surrounding the establishment of a treatment of choice in the infections caused by these amoebae. We consider that although chlorhexidine and itraconazole show good activity on these amoebae and have been used in cases of AK in Mexico with acceptable results, voriconazole should be considered as the first therapeutic option of future Acanthamoeba infections that will be diagnosed in our country.


Assuntos
Acanthamoeba/efeitos dos fármacos , Amebíase/parasitologia , Anti-Infecciosos/farmacologia , Clorexidina/farmacologia , Itraconazol/farmacologia , Voriconazol/farmacologia , Acanthamoeba/classificação , Acanthamoeba/genética , Ceratite por Acanthamoeba/parasitologia , Amebíase/tratamento farmacológico , Lentes de Contato/parasitologia , Úlcera da Córnea/parasitologia , DNA de Protozoário/isolamento & purificação , Genótipo , Humanos , Concentração Inibidora 50 , México , Solo/parasitologia
16.
Exp Parasitol ; 201: 90-92, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31059693

RESUMO

Acanthamoeba are free living amoeba that have been isolated from different environments like soil, water, air dust. Moreover, they are also able to act as opportunist pathogens, mainly causing a fatal encephalitis and also keratitis in both human and animals. This study was aimed to evaluate the activity of the Medicines for Malaria Venture (MMV) compounds against the trophozoite stage of Acanthamoeba castellanii Neff. Sixteen compounds showed ≥90% inhibition of parasite growth in the initial screen (10 µM). Those set were further evaluated to determine the inhibitor concentration that inhibit the 50% of the initial population and cytotoxicity against murine macrophages. Among the compounds included in the pathogen box, pentamidine and posaconazole were the most effective against this parasite with an of IC50 of 0.567 ±â€¯0.04 and 0.630 ±â€¯0.11, respectively.


Assuntos
Acanthamoeba castellanii/efeitos dos fármacos , Amebicidas/farmacologia , Amebicidas/classificação , Animais , Linhagem Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Concentração Inibidora 50 , Camundongos , Pentamidina/farmacologia , Triazóis/farmacologia , Trofozoítos/efeitos dos fármacos
17.
Mar Drugs ; 17(3)2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30934651

RESUMO

Bioassay-guided fractionation of the antikinetoplastid extract of the brown alga Dictyota spiralis has led to the isolation of spiralyde A (1), a new dolabellane aldehyde, along with other five known related diterpenes (2⁻6). Their structures were determined by HRESIMS, 1D and 2D NMR spectroscopy, and comparison with data reported in the literature. The antiparasitic activity of all compounds was evaluated. Spiralyde A (1) and the known compound 3,4-epoxy-7,18-dolabelladiene (2) were the most active compounds against Leishmania amazonensis and Trypanosoma cruzi. Spiralyde A (1) was the most potent compound, comparable to benznidazole, the reference drug for trypanocidal activity.


Assuntos
Diterpenos/química , Phaeophyceae/química , Fracionamento Químico , Diterpenos/isolamento & purificação , Diterpenos/farmacologia , Leishmania/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Trypanosoma cruzi/efeitos dos fármacos
18.
Mar Drugs ; 17(10)2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31627366

RESUMO

Indolocarbazoles are a family of natural alkaloids characterized by their potent protein kinase and topoisomerase I inhibitory activity. Among them, staurosporine (1) has exhibited promising inhibitory activity against parasites. Based on new insights on the activity and mechanism of action of STS in Acanthamoeba parasites, this work reports the isolation, identification, and the anti-Acanthamoeba activity of the minor metabolites 7-oxostaurosporine (2), 4'-demethylamino-4'-oxostaurosporine (3), and streptocarbazole B (4), isolated from cultures of the mangrove strain Streptomyces sanyensis. A clear correlation between the antiparasitic activities and the structural elements and conformations of the indolocarbazoles 1-4 was observed. Also, the study reveals that 7-oxostaurosporine (2) affects membrane permeability and causes mitochondrial damages on trophozoites of A. castellanii Neff.


Assuntos
Acanthamoeba/efeitos dos fármacos , Antiparasitários/farmacologia , Streptomyces/metabolismo , Alcaloides/farmacologia , Carbazóis/farmacologia , Indóis/farmacologia , Mitocôndrias/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Estaurosporina/análogos & derivados , Estaurosporina/farmacologia
19.
Mar Drugs ; 17(7)2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-31331002

RESUMO

Acanthamoeba genus is a widely distributed and opportunistic parasite with increasing importance worldwide as an emerging pathogen in the past decades. This protozoan has an active trophozoite stage, a cyst stage, and is dormant and very resistant. It can cause Acanthamoeba keratitis, an ocular sight-threatening disease, and granulomatous amoebic encephalitis, a chronic, very fatal brain pathology. In this study, the amoebicidal activity of sixteen Laurencia oxasqualenoid metabolites and semisynthetic derivatives were tested against Acanthamoeba castellanii Neff. The results obtained point out that iubol (3) and dehydrothyrsiferol (1) possess potent activities, with IC50 values of 5.30 and 12.83 µM, respectively. The hydroxylated congeners thyrsiferol (2) and 22-hydroxydehydrothyrsiferol (4), active in the same value range at IC50 13.97 and 17.00 µM, are not toxic against murine macrophages; thus, they are solid candidates for the development of new amoebicidal therapies.


Assuntos
Acanthamoeba castellanii/efeitos dos fármacos , Amebicidas/farmacologia , Laurencia/química , Extratos Vegetais/farmacologia , Esqualeno/farmacologia , Amebicidas/isolamento & purificação , Animais , Linhagem Celular , Furanos/isolamento & purificação , Furanos/farmacologia , Concentração Inibidora 50 , Macrófagos , Camundongos , Extratos Vegetais/isolamento & purificação , Piranos/isolamento & purificação , Piranos/farmacologia , Esqualeno/análogos & derivados , Esqualeno/isolamento & purificação , Testes de Toxicidade , Trofozoítos/efeitos dos fármacos
20.
Parasitol Res ; 118(3): 927-933, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30707288

RESUMO

In this work, the presence of free-living amoebae (FLA) in dishcloths collected from human activity related places was evaluated. Once in the laboratory, 6 cm2 pieces of each dishcloth were cut and washed with Page's Amoeba Solution (PAS) in sterile tubes. After washing, the dishcloth pieces were removed, and the tubes were centrifuged (1500 rpm for 10 min). The obtained pellets were seeded onto 2% non-nutrient agar (NNA) plates, incubated at room temperature and were monitored daily an inverted microscope. Once clonal cultures were obtained (only one type of FLA observed), molecular analyses were carried out in order to characterize the isolated FLA strains at the genus/genotype level. From the 31 dishcloths which were processed, FLA strains were isolated in NNA plates in 13 the samples (13/31, 42%). However, and due to bacterial overgrowth, only six strains were characterized at the molecular level (PCR and sequencing). Among the PCR positive strains, 83.33% (5/6) of the PCR positive samples belonged to Acanthamoeba genus (80% (4/5) to genotype T4 and 20% (1/5) to genotype T11). Furthermore, one strain was identified as a member of Allovahlkampfia genus using both morphological and molecular approaches. To the best of our knowledge, this is the first report on the isolation of Allovahlkampfia genus from dishcloths and in the Spanish territory. The presence of FLA in dishcloths should raise awareness to improve hygienic strategies in food- and domestic-related environments, in order to prevent contamination with these protozoa, which are able to be pathogenic and even to act as vehicles of other pathogenic agents.


Assuntos
Acanthamoeba/classificação , Acanthamoeba/isolamento & purificação , Amoeba/classificação , Amoeba/isolamento & purificação , Manipulação de Alimentos/métodos , Genótipo , Humanos , Reação em Cadeia da Polimerase , Espanha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA