Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nano Lett ; 23(4): 1175-1180, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36722374

RESUMO

The existence of the V3+-ion orbital moment is an open issue of the nature of magnetism in the van der Waals ferromagnet VI3. The huge magnetocrystalline anisotropy in conjunction with the significantly reduced ordered magnetic moment compared to the spin-only value provides strong but indirect evidence of a large V orbital moment. We used the unique capability of X-ray magnetic circular dichroism to determine the orbital component of the total magnetic moment and provide a direct proof of an exceptionally sizable orbital moment of the V3+ ion in VI3. Our ligand field multiplet simulations of the XMCD spectra in synergy with the results of DFT calculations agree with the existence of two V sites with different orbital occupations and OM magnitudes in the ground state.

2.
Nano Lett ; 23(23): 11211-11218, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38029285

RESUMO

The two-dimensional electron system (2DES) located at the surface of strontium titanate (STO) and at several other STO-based interfaces has been an established platform for the study of novel physical phenomena since its discovery. Here we report how the interfacing of STO and tetracyanoquinodimethane (TCNQ) results in a charge transfer that depletes the number of free carriers at the STO surface, with a strong impact on its electronic structure. Our study paves the way for efficient tuning of the electronic properties, which promises novel applications in the framework of oxide/organic-based electronics.

3.
Nano Lett ; 21(3): 1295-1302, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33470113

RESUMO

The properties of correlated oxides can be manipulated by forming short-period superlattices since the layer thicknesses are comparable with the typical length scales of the involved correlations and interface effects. Herein, we studied the metal-insulator transitions (MITs) in tetragonal NdNiO3/SrTiO3 superlattices by controlling the NdNiO3 layer thickness, n in the unit cell, spanning the length scale of the interfacial octahedral coupling. Scanning transmission electron microscopy reveals a crossover from a modulated octahedral superstructure at n = 8 to a uniform nontilt pattern at n = 4, accompanied by a drastically weakened insulating ground state. Upon further reducing n the predominant dimensionality effect continuously raises the MIT temperature, while leaving the antiferromagnetic transition temperature unaltered down to n = 2. Remarkably, the MIT can be enhanced by imposing a sufficiently large strain even with strongly suppressed octahedral rotations. Our results demonstrate the relevance for the control of oxide functionalities at reduced dimensions.

4.
Small ; 17(50): e2104779, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34643036

RESUMO

Molecular interfaces formed between metals and molecular compounds offer a great potential as building blocks for future opto-electronics and spintronics devices. Here, a combined theoretical and experimental spectro-microscopy approach is used to show that the charge transfer occurring at the interface between nickel tetraphenyl porphyrins and copper changes both spin and oxidation states of the Ni ion from [Ni(II), S = 0] to [Ni(I), S = 1/2]. The chemically active Ni(I), even in a buried multilayer system, can be functionalized with nitrogen dioxide, allowing a selective tuning of the electronic properties of the Ni center that is switched to a [Ni(II), S = 1] state. While Ni acts as a reversible spin switch, it is found that the electronic structure of the macrocycle backbone, where the frontier orbitals are mainly localized, remains unaffected. These findings pave the way for using the present porphyrin-based system as a platform for the realization of multifunctional devices where the magnetism and the optical/transport properties can be controlled simultaneously by independent stimuli.


Assuntos
Porfirinas , Cobre , Metais , Níquel , Temperatura
5.
Chemistry ; 27(10): 3526-3535, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33264485

RESUMO

Due to its unique magnetic properties offered by the open-shell electronic structure of the central metal ion, and for being an effective catalyst in a wide variety of reactions, iron phthalocyanine has drawn significant interest from the scientific community. Nevertheless, upon surface deposition, the magnetic properties of the molecular layer can be significantly affected by the coupling occurring at the interface, and the more reactive the surface, the stronger is the impact on the spin state. Here, we show that on Cu(100), indeed, the strong hybridization between the Fe d-states of FePc and the sp-band of the copper substrate modifies the charge distribution in the molecule, significantly influencing the magnetic properties of the iron ion. The FeII ion is stabilized in the low singlet spin state (S=0), leading to the complete quenching of the molecule magnetic moment. By exploiting the FePc/Cu(100) interface, we demonstrate that NO2 dissociation can be used to gradually change the magnetic properties of the iron ion, by trimming the gas dosage. For lower doses, the FePc film is decoupled from the copper substrate, restoring the gas phase triplet spin state (S=1). A higher dose induces the transition from ferrous to ferric phthalocyanine, in its intermediate spin state, with enhanced magnetic moment due to the interaction with the atomic ligands. Remarkably, in this way, three different spin configurations have been observed within the same metalorganic/metal interface by exposing it to different doses of NO2 at room temperature.

6.
Angew Chem Int Ed Engl ; 60(26): 14609-14619, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-33826206

RESUMO

The role of the perovskite lattice oxygen in the oxygen evolution reaction (OER) is systematically studied in the PrBaCo2 O5+δ family. The reduced number of physical/chemical variables combined with in-depth characterizations such as neutron dif-fraction, O K-edge X-ray absorption spectroscopy (XAS), electron energy loss spectroscopy (EELS), magnetization and scanning transmission electron microscopy (STEM) studies, helps investigating the complex correlation between OER activity and a single perovskite property, such as the oxygen content. Larger amount of oxygen vacancies appears to facilitate the OER, possibly contributing to the mechanism involving the oxidation of lattice oxygen, i.e., the lattice oxygen evolution reaction (LOER). Furthermore, not only the number of vacancies but also their local arrangement in the perovskite lattice influences the OER activity, with a clear drop for the more stable, ordered stoichiometry.

7.
J Synchrotron Radiat ; 27(Pt 5): 1289-1296, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32876604

RESUMO

X-ray absorption spectroscopy of thin films is central to a broad range of scientific fields, and is typically detected using indirect techniques. X-ray excited optical luminescence (XEOL) from the sample's substrate is one such detection method, in which the luminescence signal acts as an effective transmission measurement through the film. This detection method has several advantages that make it versatile compared with others, in particular for insulating samples or when a probing depth larger than 10 nm is required. In this work a systematic performance analysis of this method is presented with the aim of providing guidelines for its advantages and pitfalls, enabling a wider use of this method by the thin film community. The efficiency of XEOL is compared and quantified from a range of commonly used substrates. These measurements demonstrate the equivalence between XEOL and X-ray transmission measurements for thin films. Moreover, the applicability of XEOL to magnetic studies is shown by employing XMCD sum rules with XEOL-generated data. Lastly, it is demonstrated that above a certain thickness XEOL shows a saturation-like effect, which can be modelled and corrected for.

8.
Molecules ; 23(4)2018 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-29677142

RESUMO

The magnetic anisotropy and exchange coupling between spins localized at the positions of 3d transition metal atoms forming two-dimensional metal⁻organic coordination networks (MOCNs) grown on a Au(111) metal surface are studied. In particular, we consider MOCNs made of Ni or Mn metal centers linked by 7,7,8,8-tetracyanoquinodimethane (TCNQ) organic ligands, which form rectangular networks with 1:1 stoichiometry. Based on the analysis of X-ray magnetic circular dichroism (XMCD) data taken at T = 2.5 K, we find that Ni atoms in the Ni⁻TCNQ MOCNs are coupled ferromagnetically and do not show any significant magnetic anisotropy, while Mn atoms in the Mn⁻TCNQ MOCNs are coupled antiferromagnetically and do show a weak magnetic anisotropy with in-plane magnetization. We explain these observations using both a model Hamiltonian based on mean-field Weiss theory and density functional theory calculations that include spin⁻orbit coupling. Our main conclusion is that the antiferromagnetic coupling between Mn spins and the in-plane magnetization of the Mn spins can be explained by neglecting effects due to the presence of the Au(111) surface, while for Ni⁻TCNQ the metal surface plays a role in determining the absence of magnetic anisotropy in the system.


Assuntos
Fenômenos Magnéticos , Magnetismo , Metais/química , Modelos Químicos , Algoritmos , Anisotropia , Cristalografia por Raios X , Magnetismo/métodos , Modelos Moleculares , Análise Espectral
9.
Phys Rev Lett ; 114(8): 087201, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25768775

RESUMO

The interaction between the endohedral unit in the single-molecule magnet Dy_{2}ScN@C_{80} and a rhodium (111) substrate leads to alignment of the Dy 4f orbitals. The resulting orientation of the Dy_{2}ScN plane parallel to the surface is inferred from comparison of the angular anisotropy of x-ray absorption spectra and multiplet calculations in the corresponding ligand field. The x-ray magnetic circular dichroism is also angle dependent and signals strong magnetocrystalline anisotropy. This directly relates geometric and magnetic structure. Element specific magnetization curves from different coverages exhibit hysteresis at a sample temperature of ∼4 K. From the measured hysteresis curves, we estimate the zero field remanence lifetime during x-ray exposure of a submonolayer to be about 30 seconds.

10.
ACS Appl Mater Interfaces ; 15(50): 58643-58650, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38062584

RESUMO

High-entropy oxides (HEOs) have gained significant interest in recent years due to their unique structural characteristics and potential to tailor functional properties. However, the electronic structure of the HEOs currently remains vastly unknown. In this work, combining magnetometry measurements, scanning transmission electron microscopy, and element-specific X-ray absorption spectroscopy, the electronic structure and magnetic properties of the perovskite-HEO La(Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)O3 epitaxial thin films are systemically studied. It is found that enhanced magnetic frustration emerges from competing exchange interactions of the five transition-metal cations with energetically favorable half-filled/full-filled electron configurations, resulting in an unprecedented large vertical exchange bias effect in the single-crystalline films. Furthermore, our findings demonstrate that the La(Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)O3 layer with a thickness down to 1 nm can be used as a pinning layer and strongly coupled with a ferromagnetic La0.7Sr0.3MnO3 layer, leading to a notable exchange bias and coercivity enhancement in a cooling field as small as 5 Oe. Our studies not only provide invaluable insight into the electronic structure of HEOs but also pave the way for a new era of large bias materials for spintronics devices.

11.
Nat Commun ; 14(1): 6127, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37779120

RESUMO

The interplay between spin-orbit interaction and magnetic order is one of the most active research fields in condensed matter physics and drives the search for materials with novel, and tunable, magnetic and spin properties. Here we report on a variety of unique and unexpected observations in thin multiferroic Ge1-xMnxTe films. The ferrimagnetic order parameter in this ferroelectric semiconductor is found to switch direction under magnetostochastic resonance with current pulses many orders of magnitude lower as for typical spin-orbit torque systems. Upon a switching event, the magnetic order spreads coherently and collectively over macroscopic distances through a correlated spin-glass state. Utilizing these observations, we apply a novel methodology to controllably harness this stochastic magnetization dynamics.

12.
Commun Phys ; 6(1): 223, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38665398

RESUMO

The microscopic mechanism of heavy band formation, relevant for unconventional superconductivity in CeCoIn5 and other Ce-based heavy fermion materials, depends strongly on the efficiency with which f electrons are delocalized from the rare earth sites and participate in a Kondo lattice. Replacing Ce3+ (4f1, J = 5/2) with Sm3+ (4f5, J = 5/2), we show that a combination of the crystal electric field and on-site Coulomb repulsion causes SmCoIn5 to exhibit a Γ7 ground state similar to CeCoIn5 with multiple f electrons. We show that with this single-ion ground state, SmCoIn5 exhibits a temperature-induced valence crossover consistent with a Kondo scenario, leading to increased delocalization of f holes below a temperature scale set by the crystal field, Tv ≈ 60 K. Our result provides evidence that in the case of many f electrons, the crystal field remains the dominant tuning knob in controlling the efficiency of delocalization near a heavy fermion quantum critical point, and additionally clarifies that charge fluctuations play a general role in the ground state of "115" materials.

13.
J Am Chem Soc ; 134(24): 9840-3, 2012 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-22582902

RESUMO

The magnetism of DySc(2)N@C(80) endofullerene was studied with X-ray magnetic circular dichroism (XMCD) and a magnetometer with a superconducting quantum interference device (SQUID) down to temperatures of 2 K and in fields up to 7 T. XMCD shows hysteresis of the 4f spin and orbital moment in Dy(III) ions. SQUID magnetometry indicates hysteresis below 6 K, while thermal and nonthermal relaxation is observed. Dilution of DySc(2)N@C(80) samples with C(60) increases the zero-field 4f electron relaxation time at 2 K to several hours.

14.
J Synchrotron Radiat ; 19(Pt 5): 661-74, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22898943

RESUMO

X-Treme is a soft X-ray beamline recently built in the Swiss Light Source at the Paul Scherrer Institut in collaboration with École Polytechnique Fédérale de Lausanne. The beamline is dedicated to polarization-dependent X-ray absorption spectroscopy at high magnetic fields and low temperature. The source is an elliptically polarizing undulator. The end-station has a superconducting 7 T-2 T vector magnet, with sample temperature down to 2 K and is equipped with an in situ sample preparation system for surface science. The beamline commissioning measurements, which show a resolving power of 8000 and a maximum flux at the sample of 4.7 × 10(12) photons s(-1), are presented. Scientific examples showing X-ray magnetic circular and X-ray magnetic linear dichroism measurements are also presented.

15.
J Phys Chem A ; 116(30): 7842-7, 2012 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-22788870

RESUMO

An isostructural series of dinuclear chromium(III)-lanthanide(III) clusters is formed by fluoride abstraction of cis-[CrF2(phen)2](+) by Ln(3+) resulting in LnF3 and methoxide-bridged Cr-Ln clusters (Ln = Nd (1), Tb (2), Dy (3)) of formula [Cr(III)(phen)2(µ-MeO)2Ln(NO3)4]·xMeOH (x = 2-2.73). In contrast to fluoride, methoxide bridges in a nonlinear fashion, which facilitates chelation. For 3, X-ray magnetic circular dichroism (XMCD) provides element-specific magnetization curves that are compared to cluster magnetization and susceptibility data acquired by SQUID magnetometry. The combination of XMCD and SQUID is able to resolve very small magnetic coupling values and reveals a weak Cr(III)-Dy(III) coupling of j = -0.04(3) cm(-1). The Dy(III) ion has a ground-state Kramers doublet of mJ = ±13/2, and the first excited doublet is found to be mJ = ±11/2 at an energy of δ = 57(21) cm(-1). The Cr(III) ion exhibits a uniaxial anisotropy of DCr = -1.7(1.0) cm(-1). Further, we observe that a weak anisotropic coupling of dipolar origin is sufficient to model the data, suggesting that methoxide bridges do not play a significant role in the magnetic coupling for the present systems.


Assuntos
Cromo/química , Disprósio/química , Fluoretos/química , Metanol/química , Compostos Organometálicos/química , Dicroísmo Circular , Campos Magnéticos , Modelos Moleculares , Compostos Organometálicos/síntese química , Raios X
16.
Adv Mater ; 34(36): e2203071, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35841137

RESUMO

Charge-transfer phenomena at heterointerfaces are a promising pathway to engineer functionalities absent in bulk materials but can also lead to degraded properties in ultrathin films. Mitigating such undesired effects with an interlayer reshapes the interface architecture, restricting its operability. Therefore, developing less-invasive methods to control charge transfer will be beneficial. Here, an appropriate top-interface design allows for remote manipulation of the charge configuration of the buried interface and concurrent restoration of the ferromagnetic trait of the whole film. Double-perovskite insulating ferromagnetic La2 NiMnO6 (LNMO) thin films grown on perovskite oxide substrates are investigated as a model system. An oxygen-vacancy-assisted electronic reconstruction takes place initially at the LNMO polar interfaces. As a result, the magnetic properties of 2-5 unit cell LNMO films are affected beyond dimensionality effects. The introduction of a top electron-acceptor layer redistributes the electron excess and restores the ferromagnetic properties of the ultrathin LNMO films. Such a strategy can be extended to other interfaces and provides an advanced approach to fine-tune the electronic features of complex multilayered heterostructures.

17.
J Mater Chem C Mater ; 9(18): 5977-5984, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-34094567

RESUMO

Utilizing the magnetostrictive properties of CoFe2O4, we demonstrate reversible room temperature control of the Ti electronic structure in SrTiO3-CoFe2O4 heterostructures, by inducing local and reversible strain in the SrTiO3. By means of X-ray absorption spectroscopy, we have ascertained the changes that take place in the energy levels of the Ti 3d orbitals under the influence of an external magnetic field. The observed Ti electronic state when the sample is subjected to moderately large external magnetic fields and the disappearance of the induced phase upon their removal indicates lattice distortions that are suggestive of the development of a net electric polarization.

18.
Nanoscale ; 13(37): 15844-15852, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34518859

RESUMO

Tuning the anisotropy through exchange bias in bimagnetic nanoparticles is an active research strategy for enhancing and tailoring the magnetic properties for a wide range of applications. Here we present a structural and magnetic characterization of unique FeCr-oxide nanoparticles generated from seed material with a Fe : Cr ratio of 4.71 : 1 using a physical aerosol method based on spark ablation. The nanoparticles have a novel bimagnetic structure composed of a 40 nm ferrimagnetic Cr-substituted Fe3O4 structure with 4 nm antiferromagnetic FexO subdomains. Cooling in an applied magnetic field across the Néel temperature of the FexO subdomains results in a significant shift in the hysteresis, demonstrating the presence of a large exchange bias. The observed shift of µ0HE = 460 mT is among the largest values reported for FexO-Fe3O4-based nanoparticles and is attributed to the large antiferromagnetic-ferrimagnetic interface area provided by the subdomains.

19.
Adv Sci (Weinh) ; 8(19): e2101516, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34382373

RESUMO

Employing X-ray magnetic circular dichroism (XMCD), angle-resolved photoemission spectroscopy (ARPES), and momentum-resolved density fluctuation (MRDF) theory, the magnetic and electronic properties of ultrathin NdNiO3 (NNO) film in proximity to ferromagnetic (FM) La0.67 Sr0.33 MnO3 (LSMO) layer are investigated. The experimental data shows the direct magnetic coupling between the nickelate film and the manganite layer which causes an unusual ferromagnetic (FM) phase in NNO. Moreover, it is shown the metal-insulator transition in the NNO layer, identified by an abrupt suppression of ARPES spectral weight near the Fermi level (EF ), is absent. This observation suggests that the insulating AFM ground state is quenched in proximity to the FM layer. Combining the experimental data (XMCD and AREPS) with the momentum-resolved density fluctuation calculation (MRDF) reveals a direct link between the MIT and the magnetic orders in NNO systems. This work demonstrates that the proximity layer order can be broadly used to modify physical properties and enrich the phase diagram of RENiO3 (RE = rare-earth element).

20.
J Synchrotron Radiat ; 17(1): 93-102, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20029117

RESUMO

An energy-dispersive X-ray absorption spectroscopy beamline mainly dedicated to X-ray magnetic circular dichroism (XMCD) and material science under extreme conditions has been implemented in a bending-magnet port at the Brazilian Synchrotron Light Laboratory. Here the beamline technical characteristics are described, including the most important aspects of the mechanics, optical elements and detection set-up. The beamline performance is then illustrated through two case studies on strongly correlated transition metal oxides: an XMCD insight into the modifications of the magnetic properties of Cr-doped manganites and the structural deformation in nickel perovskites under high applied pressure.


Assuntos
Metais/química , Óxidos/química , Síncrotrons , Espectroscopia por Absorção de Raios X/métodos , Argentina , Transferência de Energia , Estatística como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA