Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Rev Endocr Metab Disord ; 23(1): 13-30, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34523036

RESUMO

Leptin is a hormone primarily produced by the adipose tissue in proportion to the size of fat stores, with a primary function in the control of lipid reserves. Besides adipose tissue, leptin is also produced by other tissues, such as the stomach, placenta, and mammary gland. Altogether, leptin exerts a broad spectrum of short, medium, and long-term regulatory actions at the central and peripheral levels, including metabolic programming effects that condition the proper development and function of the adipose organ, which are relevant for its main role in energy homeostasis. Comprehending how leptin regulates adipose tissue may provide important clues to understand the pathophysiology of obesity and related diseases, such as type 2 diabetes, as well as its prevention and treatment. This review focuses on the physiological and long-lasting regulatory effects of leptin on adipose tissue, the mechanisms and pathways involved, its main outcomes on whole-body physiological homeostasis, and its consequences on chronic diseases.


Assuntos
Diabetes Mellitus Tipo 2 , Leptina , Tecido Adiposo/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Homeostase , Humanos , Obesidade/metabolismo
2.
Eur J Clin Invest ; 51(5): e13482, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33350459

RESUMO

The concept of developmental origins of health and disease (DOHaD) was initially supported by the low birth weight and higher risk of developing cardiovascular disease in adult life, caused by nutrition restriction during foetal development. However, other programming windows have been recognized in the last years, namely lactation, infancy, adolescence and even preconception. Although the concept has been developed in order to study the impact of foetal calorie restriction in adult life, it is now recognized that maternal overweight during programming windows is also harmful to the offspring. This article explores and summarizes the current knowledge about the impact of maternal obesity and obesogenic diets during lactation in the metabolic programming towards the development of metabolic syndrome in the adult life. The impact of maternal obesity and obesogenic diets in milk quality is discussed, including the alterations in specific micro and macronutrients, as well as the impact of such alterations in the development of metabolic syndrome-associated features in the newborn, such as insulin resistance and adiposity. Moreover, the impact of milk quality and formula feeding in infants' gut microbiota, immune system maturation and in the nutrient-sensing mechanisms, namely those related to gut hormones and leptin, are also discussed under the current knowledge.


Assuntos
Aleitamento Materno , Dieta , Microbioma Gastrointestinal , Síndrome Metabólica , Leite Humano , Obesidade Materna , Adiposidade , Alimentação com Mamadeira , Feminino , Humanos , Fórmulas Infantis , Resistência à Insulina , Lactação , Gravidez
3.
FASEB J ; 34(7): 9003-9017, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32474969

RESUMO

Calorie restriction during gestation in rats has long-lasting adverse effects in the offspring. It induces metabolic syndrome-related alterations, which are partially reversed by leptin supplementation during lactation. We employed these conditions to identify transcript-based nutrient sensitive biomarkers in peripheral blood mononuclear cells (PBMCs) predictive of later adverse metabolic health. The best candidate was validated in humans. Transcriptome analysis of PBMCs from adult male Wistar rats of three experimental groups was performed: offspring of control dams (CON), and offspring of 20% calorie-restricted dams during gestation without (CR) and with leptin supplementation throughout lactation (CR-LEP). The expression of 401 genes was affected by gestational calorie restriction and reversed by leptin. The changes preceded metabolic syndrome-related phenotypic alterations. Of these genes, Npc1 mRNA levels were lower in CR vs CON, and normalized to CON in CR-LEP. In humans, NPC1 mRNA levels in peripheral blood cells (PBCs) were decreased in subjects with mildly impaired metabolic health compared to healthy subjects. Therefore, a set of potential transcript-based biomarkers indicative of a predisposition to metabolic syndrome-related alterations were identified, including NPC1, which was validated in humans. Low NPC1 transcript levels in PBCs are a candidate biomarker of increased risk for impaired metabolic health in humans.


Assuntos
Biomarcadores/sangue , Regulação da Expressão Gênica no Desenvolvimento , Leucócitos Mononucleares/metabolismo , Doenças Metabólicas/diagnóstico , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Transcriptoma , Animais , Restrição Calórica , Modelos Animais de Doenças , Feminino , Masculino , Doenças Metabólicas/etiologia , Doenças Metabólicas/metabolismo , Gravidez , Ratos , Ratos Wistar
4.
Int J Obes (Lond) ; 44(3): 715-726, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31467421

RESUMO

OBJECTIVES: High-esterified pectin (HEP) is a prebiotic able to modulate gut microbiota, associated with health-promoting metabolic effects in glucose and lipid metabolism and adipostatic hormone sensitivity. Possible effects regulating adaptive thermogenesis and energy waste are poorly known. Therefore, we aimed to study how physiological supplementation with HEP is able to affect microbiota, energy metabolism and adaptive thermogenic capacity, and to contribute to the healthier phenotype promoted by HEP supplementation, as previously shown. We also attempted to decipher some of the mechanisms involved in the HEP effects, including in vitro experiments. SUBJECTS AND EXPERIMENTAL DESIGN: We used a model of metabolic malprogramming consisting of the progeny of rats with mild calorie restriction during pregnancy, both under control diet and an obesogenic (high-sucrose) diet, supplemented with HEP, combined with in vitro experiments in primary cultured brown and white adipocytes treated with the postbiotic acetate. RESULTS: Our main findings suggest that chronic HEP supplementation induces markers of brown and white adipose tissue thermogenic capacity, accompanied by a decrease in energy efficiency, and prevention of weight gain under an obesogenic diet. We also show that HEP promotes an increase in beneficial bacteria in the gut and peripheral levels of acetate. Moreover, in vitro acetate can improve adipokine production, and increase thermogenic capacity and browning in brown and white adipocytes, respectively, which could be part of the protection mechanism against excess weight gain observed in vivo. CONCLUSION: HEP and acetate stand out as prebiotic/postbiotic active compounds able to modulate both brown-adipocyte metabolism and browning and protect against obesity.


Assuntos
Adipócitos Marrons/efeitos dos fármacos , Adipócitos Brancos/efeitos dos fármacos , Pectinas/farmacologia , Prebióticos , Termogênese/efeitos dos fármacos , Acetatos/metabolismo , Acetatos/farmacologia , Adipócitos Marrons/citologia , Adipócitos Marrons/metabolismo , Adipócitos Brancos/citologia , Adipócitos Brancos/metabolismo , Animais , Restrição Calórica , Suplementos Nutricionais , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Pectinas/administração & dosagem , Pectinas/metabolismo , Gravidez , Ratos , Ratos Wistar
5.
FASEB J ; 33(1): 796-807, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30080446

RESUMO

Plasma profiles of acylcarnitines (ACs) and amino acids (AAs) may have interest as potential biomarkers. Here we analyzed plasma AC and AA profiles in 2 rat models with different metabolic programming outcomes: offspring of dams fed a cafeteria diet during lactation (O-CAF, with a thin-outside-fat-inside phenotype) and the offspring of dams with diet-induced obesity subjected to dietary normalization before gestation [offspring of postcafeteria dams (O-PCaf), nonaltered phenotype]. The purpose was to identify early variables that might indicate a propensity for a dysmetabolic state. O-CAF rats presented higher circulating levels of most of the lipid-derived ACs and higher hepatic expression of genes related to fatty acid oxidation ( Ppara and Cpt1a) than controls [offspring of control dams (O-C)]. They also exhibited an altered plasma AA profile. These differences were not observed in O-PCaf animals. A partial least squares-discriminant analysis score plot of the metabolomics data showed a clear separation between O-CAF and O-C animals. The long-chain ACs (C18, C18:1, C18:2, C16:1, and C16DC) and the AAs glycine, alanine, isoleucine, serine, and proline are the variables mainly influencing this separation. In summary, we have identified a cluster of ACs and AAs whose alterations may indicate poor nutrition during lactation due to maternal unbalanced diet intake and predict the later dysmetabolic phenotype observed in the offspring.-Pomar, C. A., Kuda, O., Kopecky, J., Rombaldova, M., Castro, H., Picó, C., Sánchez, J., Palou, A. Alterations in plasma acylcarnitine and amino acid profiles may indicate poor nutrition during the suckling period due to maternal intake of an unbalanced diet and may predict later metabolic dysfunction.


Assuntos
Aminoácidos/sangue , Animais Lactentes , Carnitina/análogos & derivados , Dieta , Fenômenos Fisiológicos da Nutrição Materna , Doenças Metabólicas/etiologia , Estado Nutricional , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Animais , Carnitina/sangue , Feminino , Lactação , Metabolismo dos Lipídeos , Fígado/metabolismo , Masculino , Modelos Animais , Análise Multivariada , Gravidez , Ratos
6.
Eur J Nutr ; 59(3): 1191-1204, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31069458

RESUMO

PURPOSE: Mild/moderate maternal calorie restriction during lactation in rats has been associated with a lower predisposition to obesity and a healthier metabolic profile in adult offspring. Here, we aimed to assess the impact of maternal calorie restriction during lactation on milk composition to identify potential candidate components that could be involved in the programming effects in offspring. METHODS: An untargeted metabolomic approach in milk samples from 20%-calorie-restricted lactating (CRL) dams and their controls was performed. Levels of leptin, adiponectin, and irisin hormones in milk were also determined at lactating days 5, 10, and 15. RESULTS: Metabolomic analyses revealed a different metabolite pattern in milk between controls and CRL dams. 29 differential metabolites were tentatively identified (p < 0.05, FC > 1.5). Among them, myo-inositol, which showed greater levels in milk from CRL rats than controls, may be highlighted as one of the biologically plausible candidates that could be related to the beneficial effects of CRL in offspring. Results regarding myo-inositol were validated spectrophotometrically at days 10 and 15 of lactation, and levels in milk were correlated with maternal plasma levels. In addition, milk from CRL dams presented increased levels of adiponectin, decreased levels of irisin, and no changes in leptin levels vs controls throughout lactation. CONCLUSION: These data reveal important changes in milk composition due to calorie restriction during lactation that may be involved in the metabolic programming of the healthier phenotype of adult offspring. However, the possible contribution of the specific components is yet to be determined.


Assuntos
Restrição Calórica/estatística & dados numéricos , Lactação/metabolismo , Fenômenos Fisiológicos da Nutrição Materna , Metabolômica/métodos , Leite/metabolismo , Animais , Feminino , Modelos Animais , Fenótipo , Ratos , Ratos Wistar
7.
J Transl Med ; 17(1): 145, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31064394

RESUMO

BACKGROUND: Nutrition of the newborn during the early postnatal period seems to be of capital importance and there is clinical evidence showing the protective effect of breastfeeding compared with formula feeding on childhood obesity and its comorbidities. Infants born small for gestation age may be more sensitive to the type of feeding during lactation. Here, we aimed to analyze the impact of birth weight and the type of infant feeding on the expression levels in peripheral blood cells of selected candidate genes involved in energy homeostasis in 5-year-old children, to find out potential early biomarkers of metabolic programming effects during this period of metabolic plasticity. METHODS: Forty subjects were recruited at birth and divided in four groups according to birth weight (adequate or small for gestational age) and type of infant feeding (breastfeeding or formula feeding). They were followed from birth to the age of 5 years. RESULTS: At 5 years, no significant differences regarding anthropometric parameters were found between groups, and all children had normal biochemical values. Expression levels of UCP2 and MC4R in peripheral blood cells were lower and higher, respectively, in formula feeding children compared with breastfeeding ones (P = 0.002 and P = 0.064, two-way ANOVA). Differences were more marked and significant by Student's t test in small for gestation age children (P < 0.001 and P = 0.017, respectively). Transcript levels of FASN and FTO in peripheral blood cells were also different according to the type of infant feeding, but only in small for gestation age children. CONCLUSIONS: Altogether, these results suggest that small for gestation age infants are more sensitive to the type of feeding during lactation, and transcript levels of particular genes in peripheral blood cells, especially the MC4R/UCP2 mRNA ratio, may precisely reflect these effects in the absence of clear differences in phenotypic traits.


Assuntos
Biomarcadores/sangue , Células Sanguíneas/metabolismo , Aleitamento Materno , Recém-Nascido Pequeno para a Idade Gestacional/sangue , Peso ao Nascer , Pressão Sanguínea/genética , Pré-Escolar , Feminino , Regulação da Expressão Gênica , Humanos , Recém-Nascido , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sístole/genética
8.
Eur J Nutr ; 57(4): 1397-1407, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28315941

RESUMO

PURPOSE: This prospective study explores high sensitivity C-reactive protein (hs-CRP) levels in relation to dietary patterns at two time points in European children. METHODS: Out of the baseline sample of the IDEFICS study (n = 16,228), 4020 children, aged 2-9 years at baseline, with available hs-CRP levels and valid data from a food frequency questionnaire (FFQ) at baseline (T0) and 2 years later (T1) were included. K-means clustering algorithm based on the similarities between relative food consumption frequencies of the FFQ was applied. hs-CRP was dichotomized according to sex-specific cutoff points. Multilevel logistic regression was performed to assess the relationship between dietary patterns and hs-CRP adjusting for covariates. RESULTS: Three consistent dietary patterns were found at T0 and T1: 'animal protein and refined carbohydrate', 'sweet and processed' and 'healthy'. Children allocated to the 'protein' and 'sweet and processed' clusters at both time points had significantly higher odds of being in the highest category of hs-CRP (OR 1.47; 95% CI 1.03-2.09 for 'animal protein and refined carbohydrate' and OR 1.44; 95% CI 1.08-1.92 for 'sweet and processed') compared to the 'healthy' cluster. The odds remained significantly higher for the 'sweet and processed' pattern (OR 1.39; 95% CI 1.05-1.84) when covariates were included. CONCLUSIONS: A dietary pattern characterized by frequent consumption of sugar and processed products and infrequent consumption of vegetables and fruits over time was independently related with inflammation in European children. Efforts to improve the quality of the diet in childhood may prevent future diseases related with chronic inflammation.


Assuntos
Proteína C-Reativa/metabolismo , Dieta , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Estudos Prospectivos
9.
Cell Physiol Biochem ; 33(5): 1498-515, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24854839

RESUMO

BACKGROUND/AIMS: Moderate maternal calorie-restriction during gestation programmes offspring for a major propensity to develop metabolic alterations in adulthood. We aimed to assess whether increased hepatic fatty-acid oxidation (FAO), at early ages, by gene transfer of Cpt1am (active mutant of carnitine palmitoyltransferase-1a), may be a strategy for reversing metabolic disturbances associated to maternal calorie-restriction during gestation in rats. METHODS: AAV-Gfp (control) and AAV-Cpt1am vectors were administered by tail vein injection in 18-day-old control-pups and the offspring of 20% calorie-restricted rats during gestation (CR). After weaning, animals were fed with normal-fat diet. At the age of 4 months, they were moved to HF-diet and sacrificed at the age of 6 months to collect tissues. Locomotive activity, energy expenditure and blood pressure were measured. RESULTS: Under HF-diet, CR-animals showed higher HOMA-IR, adipocyte diameter and hepatic triglyceride accumulation than controls; these alterations were reverted in Cpt1am-injected animals. In liver, this treatment ameliorated inflammatory state, decreased expression of lipogenesis-related genes and partially restored the decreased expression of leptin-receptor occurring in CR-animals. Treatment also reverted the decreased energy expenditure and the increased blood pressure of CR-animals. CONCLUSION: Increasing hepatic FAO through AAV-Cpt1am injection at juvenile ages prevents some metabolic disorders associated to gestational maternal calorie-restriction.


Assuntos
Ácidos Graxos/metabolismo , Fígado Gorduroso/metabolismo , Terapia Genética , Desnutrição/metabolismo , Doenças Metabólicas/metabolismo , Doenças Metabólicas/terapia , Complicações na Gravidez/metabolismo , Efeitos Tardios da Exposição Pré-Natal/terapia , Animais , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Feminino , Humanos , Masculino , Doenças Metabólicas/etiologia , Doenças Metabólicas/genética , Oxirredução , Gravidez , Prenhez , Efeitos Tardios da Exposição Pré-Natal/genética , Ratos , Ratos Wistar
10.
Cells ; 13(10)2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38786092

RESUMO

The early stages of life, especially the period from conception to two years, are crucial for shaping metabolic health and the risk of obesity in adulthood. Adipose tissue (AT) plays a crucial role in regulating energy homeostasis and metabolism, and brown AT (BAT) and the browning of white AT (WAT) are promising targets for combating weight gain. Nutritional factors during prenatal and early postnatal stages can influence the development of AT, affecting the likelihood of obesity later on. This narrative review focuses on the nutritional programming of AT features. Research conducted across various animal models with diverse interventions has provided insights into the effects of specific compounds on AT development and function, influencing the development of crucial structures and neuroendocrine circuits responsible for energy balance. The hormone leptin has been identified as an essential nutrient during lactation for healthy metabolic programming against obesity development in adults. Studies have also highlighted that maternal supplementation with polyunsaturated fatty acids (PUFAs), vitamin A, nicotinamide riboside, and polyphenols during pregnancy and lactation, as well as offspring supplementation with myo-inositol, vitamin A, nicotinamide riboside, and resveratrol during the suckling period, can impact AT features and long-term health outcomes and help understand predisposition to obesity later in life.


Assuntos
Micronutrientes , Obesidade , Humanos , Animais , Obesidade/metabolismo , Micronutrientes/farmacologia , Micronutrientes/metabolismo , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Feminino , Gravidez , Tecido Adiposo/metabolismo , Tecido Adiposo/efeitos dos fármacos , Fármacos Antiobesidade/farmacologia , Fármacos Antiobesidade/uso terapêutico
11.
Nutrients ; 16(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38613013

RESUMO

This study aims to investigate the potential mechanisms underlying the protective effects of myo-inositol (MI) supplementation during suckling against the detrimental effects of fetal energy restriction described in animal studies, particularly focusing on the potential connections with BDNF signaling. Oral physiological doses of MI or the vehicle were given daily to the offspring of control (CON) and 25%-calorie-restricted (CR) pregnant rats during suckling. The animals were weaned and then fed a standard diet until 5 months of age, when the diet was switched to a Western diet until 7 months of age. At 25 days and 7 months of age, the plasma BDNF levels and mRNA expression were analyzed in the hypothalamus and three adipose tissue depots. MI supplementation, especially in the context of gestational calorie restriction, promoted BDNF secretion and signaling at a juvenile age and in adulthood, which was more evident in the male offspring of the CR dams than in females. Moreover, the CR animals supplemented with MI exhibited a stimulated anorexigenic signaling pathway in the hypothalamus, along with improved peripheral glucose management and enhanced browning capacity. These findings suggest a novel connection between MI supplementation during suckling, BDNF signaling, and metabolic programming, providing insights into the mechanisms underlying the beneficial effects of MI during lactation.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Restrição Calórica , Masculino , Feminino , Gravidez , Animais , Ratos , Tecido Adiposo , Dieta Ocidental , Suplementos Nutricionais
12.
Sci Rep ; 14(1): 11366, 2024 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762543

RESUMO

Placental leptin may impact foetal development. Maternal overnutrition has been linked to increased plasma leptin levels and adverse effects on offspring, whereas choline, an essential nutrient for foetal development, has shown promise in mitigating some negative impacts of maternal obesity. Here, we investigate whether a maternal obesogenic diet alters foetal growth and leptin levels in the foetal stomach, amniotic fluid (AF), and placenta in late gestation and explore the potential modulating effects of maternal choline supplementation. Female rats were fed a control (CD) or a western diet (WD) four weeks before mating and during gestation, half of them supplemented with choline (pregnancy days 11-17). Leptin levels (in foetal stomach, AF, and placenta) and leptin gene expression (in placenta) were assessed on gestation days 20 and 21. At day 20, maternal WD feeding resulted in greater leptin levels in foetal stomach, placenta, and AF. The increased AF leptin levels were associated with a premature increase in foetal weight in both sexes. Maternal choline supplementation partially prevented these alterations, but effects differed in CD dams, causing increased AF leptin levels and greater weight in male foetuses at day 20. Maternal choline supplementation effectively mitigates premature foetal overgrowth induced by an obesogenic diet, potentially linked to increased AF leptin levels. Further research is needed to explore the sex-specific effects.


Assuntos
Líquido Amniótico , Colina , Suplementos Nutricionais , Leptina , Animais , Feminino , Leptina/sangue , Leptina/metabolismo , Gravidez , Colina/administração & dosagem , Líquido Amniótico/metabolismo , Ratos , Masculino , Placenta/metabolismo , Placenta/efeitos dos fármacos , Desenvolvimento Fetal/efeitos dos fármacos , Obesidade/metabolismo , Obesidade/etiologia , Peso Fetal/efeitos dos fármacos , Ratos Sprague-Dawley , Dieta Ocidental/efeitos adversos
13.
Curr Opin Clin Nutr Metab Care ; 16(6): 650-6, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24100671

RESUMO

PURPOSE OF REVIEW: Recent findings in animals suggest that diet-related factors can programme adipose tissue features in early life and remodel white adipose tissue (WAT) towards a brown adipose tissue (BAT)-like phenotype in adulthood, while impacting on body fat content and susceptibility to obesity. The purpose of this review is to address the significance of these results and their applicability in humans. RECENT FINDINGS: Nutritional conditions in the perinatal period influence sympathetic innervation to WAT and WAT cellularity in rodents. Leptin intake during the suckling period prevents obesity and other metabolic alterations in later life in rats through mechanisms that include increased sensitivity of adipose tissues to leptin. Recent data support the thermogenic functionality of inducible brown-like cells in rodent WAT and functional thermogenic beige adipogenesis from human progenitor cells. Diet-related factors and exercise can promote BAT activation and/or WAT-to-BAT remodelling (WAT browning) in animals. SUMMARY: Animal studies suggest that adipose tissue health and whole body adiposity might be influenced by early life nutrition and lifestyle factors in adulthood impacting energy metabolism in adipose tissues. For this knowledge to be translated to humans, biomarkers allowing early detection of the programming status of the individual and technologies allowing measuring of the thermogenic activity of adipose tissue depots in vivo are required.


Assuntos
Tecido Adiposo Branco/metabolismo , Estado Nutricional , Adipogenia , Tecido Adiposo Marrom/metabolismo , Adiposidade , Animais , Dieta , Metabolismo Energético , Humanos , Leptina/administração & dosagem , Estilo de Vida , Obesidade/dietoterapia , Obesidade/prevenção & controle , Células-Tronco/metabolismo
14.
Br J Nutr ; 109(4): 757-64, 2013 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-22640422

RESUMO

In rats, 20% gestational energy restriction programmes offspring for higher food intake, which in adulthood results in higher body weight in males but not in females. Here, we aimed to assess whether the effects of moderate energy restriction during gestation and the sex-related outcomes on adult body weight may be related to the metabolic programming of sirtuin expression in different tissues. For this purpose, 25-d-old offspring of control and 20% energy-restricted (ER) rats (from days 1-12 of pregnancy) were studied. Body weight and the weight of white adipose tissue (WAT) depots and liver were recorded and mRNA expression of sirtuin 1 (SIRT1) and selected genes in the WAT, liver, muscle and hypothalamus were analysed. No differences were found in body weight or the weight of WAT and liver between the control and ER animals. A similar pattern of SIRT1 mRNA expression was found in the WAT, liver and skeletal muscle of ER animals, but in a sex-dependent manner: ER males showed lower SIRT1 mRNA levels than the controls, while no differences were found in females. A sex-different pattern was also observed in the hypothalamus. ER males, but not females, also showed lower mRNA levels of adipose TAG lipase (ATGL) and uncoupling protein 2 in WAT and of sterol response element binding protein 1c and stearoyl-CoA desaturase-1 in the liver. Both sexes of ER animals showed lower mRNA levels of 5' adenosine monophosphate-activated protein kinase and ATGL in the liver. In conclusion, moderate maternal energy restriction during gestation programmes a particular, sex-dependent gene expression profile of SIRT1 in different peripheral tissues, which may be related to obesity predisposition in adulthood; therefore SIRT1 expression emerges as a potential early biomarker of obesity susceptibility.


Assuntos
Restrição Calórica , Regulação da Expressão Gênica , Predisposição Genética para Doença , Obesidade/metabolismo , Sirtuína 1/metabolismo , Tecido Adiposo Branco/patologia , Animais , Biomarcadores , Peso Corporal , Ingestão de Alimentos/fisiologia , Feminino , Perfilação da Expressão Gênica , Hipotálamo/metabolismo , Fígado/metabolismo , Masculino , Músculo Esquelético/metabolismo , Gravidez , Prenhez , RNA Mensageiro/metabolismo , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Fatores Sexuais
15.
Nutrients ; 15(3)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36771278

RESUMO

We aimed to analyze the long-term metabolic effects of leptin supplementation at physiological doses during suckling in the offspring of diet-induced obese rats, together with the potential benefits of improving maternal diet during lactation. Thus, the offspring of: dams fed standard-diet (SD) (CON-dams), dams fed western-diet (WD) before and during gestation and lactation (WD-dams), and dams fed as WD-dams but moved to SD during lactation (REV-dams) were supplemented throughout suckling with leptin or vehicle, and fed SD or WD from weaning to four months. Under SD, leptin treatment significantly improved metabolic profile and body fat accumulation, with stronger effects in the male offspring of CON-dams and REV-dams. Under WD, the offspring of WD-dams presented metabolic alterations that were not evident in the offspring of REV-dams. Moreover, leptin supplementation improved glucose homeostasis in the male offspring of REV-dams. Conversely, leptin supplementation in females born to WD-dams and fed WD from weaning resulted in impaired insulin sensitivity and increased hepatic lipid content. These results highlight the importance of a balanced maternal diet during the perinatal period, especially lactation, for the subsequent metabolic health of the offspring and for the beneficial effects of leptin supplementation during suckling, more evident in the male offspring.


Assuntos
Leptina , Efeitos Tardios da Exposição Pré-Natal , Animais , Feminino , Masculino , Gravidez , Ratos , Adiposidade , Dieta , Lactação , Leptina/metabolismo , Fenômenos Fisiológicos da Nutrição Materna , Obesidade/metabolismo , Parto
16.
Biofactors ; 49(5): 1022-1037, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37227188

RESUMO

We aimed to evaluate whether improving maternal diet during lactation in diet-induced obese rats reverts the impact of western diet (WD) consumption on the metabolome of milk and offspring plasma, as well as to identify potential biomarkers of these conditions. Three groups of dams were followed: control-dams (CON-dams), fed with standard diet (SD); WD-dams, fed with WD prior and during gestation and lactation; and reversion-dams (REV-dams), fed as WD-dams but moved to SD during lactation. Metabolomic analysis was performed in milk at lactation days 5, 10, and 15, and in plasma from their male and female offspring at postnatal day 15. Milk of WD-dams presented, throughout lactation and compared to CON-dams, altered profiles of amino acids and of the carnitine pool, accompanied by changes in other polar metabolites, being stachydrine, N-acetylornithine, and trimethylamine N-oxide the most relevant and discriminatory metabolites between groups. The plasma metabolome profile was also altered in the offspring of WD-dams in a sex-dependent manner, and stachydrine, ergothioneine and the acylcarnitine C12:1 appeared as the top three most discriminating metabolites in both sexes. Metabolomic changes were largely normalized to control levels both in the milk of REV-dams and in the plasma of their offspring. We have identified a set of polar metabolites in maternal milk and in the plasma of the offspring whose alterations may indicate maternal intake of an unbalanced diet during gestation and lactation. Levels of these metabolites may also reflect the beneficial effects of implementing a healthier diet during lactation.


Assuntos
Lactação , Leite , Ratos , Masculino , Feminino , Animais , Leite/química , Leite/metabolismo , Dieta , Biomarcadores/metabolismo
17.
Sci Rep ; 13(1): 5563, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-37019912

RESUMO

Insufficient physical activity (PA) in children is considered one of the major contributors to obesity and cardiometabolic complications later in life. Although regular exercise may contribute to disease prevention and health promotion, reliable early biomarkers are required to objectively discern people performing low PA from those who exercise enough. Here, we aimed to identify potential transcript-based biomarkers through the analysis of a whole-genome microarray in peripheral blood cells (PBC) from physically less active (n = 10) comparing with more active (n = 10) children. A set of genes differentially expressed (p < 0.01, Limma test) in less physically active children were identified, including the down-regulation of genes related to cardiometabolic benefits and improved skeletal function (KLB, NOX4, and SYPL2), and the up-regulation of genes whose elevated expression levels are associated with metabolic complications (IRX5, UBD, and MGP). The analysis of the enriched pathways significantly affected by PA levels were those associated with protein catabolism, skeletal morphogenesis, and wound healing, among others, which may suggest a differential impact of low PA on these processes. Microarray analysis comparing children according to their usual PA has revealed potential PBC transcript-based biomarkers that may be useful in early discerning children expending high sedentary time and its associated negative consequences.


Assuntos
Doenças Cardiovasculares , Exercício Físico , Humanos , Criança , Exercício Físico/fisiologia , Obesidade , Biomarcadores , Comportamento Sedentário , Doenças Cardiovasculares/prevenção & controle , NADPH Oxidase 4 , Proteínas Klotho
18.
Front Pediatr ; 11: 1250731, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37772038

RESUMO

Background: Physical activity (PA) provides health benefits across the lifespan and improves many established cardiovascular risk factors that have a significant impact on overall mortality. However, discrepancies between self-reported and device-based measures of PA make it difficult to obtain consistent results regarding PA and its health effects. Moreover, PA may produce different health effects depending on the type, intensity, duration, and frequency of activities and individual factors such as age, sex, body weight, early life conditions/exposures, etc. Appropriate biomarkers relating the degree of PA level with its effects on health, especially in children and adolescents, are required and missing. The main objective of the INTEGRActiv study is to identify novel useful integrative biomarkers of PA and its effects on the body health in children and adolescents, who represent an important target population to address personalized interventions to improve future metabolic health. Methods/design: The study is structured in two phases. First, biomarkers of PA and health will be identified at baseline in a core cohort of 180 volunteers, distributed into two age groups: prepubertal (n = 90), and postpubertal adolescents (n = 90). Each group will include three subgroups (n = 30) with subjects of normal weight, overweight, and obesity, respectively. Identification of new biomarkers will be achieved by combining physical measures (PA and cardiorespiratory and muscular fitness, anthropometry) and molecular measures (cardiovascular risk factors, endocrine markers, cytokines and circulating miRNA in plasma, gene expression profile in blood cells, and metabolomics profiling in plasma). In the second phase, an educational intervention and its follow-up will be carried out in a subgroup of these subjects (60 volunteers), as a first validation step of the identified biomarkers. Discussion: The INTEGRActiv study is expected to provide the definition of PA and health-related biomarkers (PA-health biomarkers) in childhood and adolescence. It will allow us to relate biomarkers to factors such as age, sex, body weight, sleep behavior, dietary factors, and pubertal status and to identify how these factors quantitatively affect the biomarkers' responses. Taken together, the INTEGRActiv study approach is expected to help monitor the efficacy of interventions aimed to improve the quality of life of children/adolescents through physical activity. Clinical Trial Registration: ClinicalTrials.gov, Identifier NCT05907785.

19.
Nutrients ; 14(9)2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35565926

RESUMO

This study investigates the ability of a maternal cafeteria diet during lactation to program brown adipose tissue (BAT) metabolic responses to an obesogenic diet re-exposure in the adult offspring after consuming a standard diet (SD). Nursing rats were fed an SD or a cafeteria diet during lactation. Their offspring (O-C and O-CAF, respectively) were weaned onto an SD, and at 16 weeks of age they were switched to a Western diet until week 24. Gene and protein expression in BAT were measured at PN22 and at 24 weeks. At PN22, compared to controls, O-CAF rats displayed lower mRNA levels of lipogenesis-related genes (Fasn), and higher expression of genes related to lipolysis (Pnpla2), fatty acid uptake (Cd36, Lpl), and oxidation (Cpt1b). Additionally, O-CAF animals displayed increased mRNA levels of Adrb3, Ucp1, and Cidea. In adulthood, these animals maintained lower mRNA levels of lipogenesis-related genes (Pparg, Srebf1, Fasn), but displayed lower expression of genes related to fatty acid uptake (Cd36), fatty acid oxidation (Cpt1b), lipolysis (Pnpla2), Adrb3, Ucp1, and Cidea. Thus, exposure to an obesogenic diet in nursing rats can affect long-term lipid metabolism and attenuate diet-induced thermogenesis in BAT in response to a new obesogenic dietary challenge later in life.


Assuntos
Dieta Ocidental , Termogênese , Tecido Adiposo Marrom/metabolismo , Animais , Ácidos Graxos/metabolismo , Feminino , Lactação/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos
20.
J Nutr Biochem ; 107: 109043, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35569798

RESUMO

Lactation is a critical period of development and alterations in milk composition due to maternal diet or status may affect infant growth. We aimed to evaluate in rats whether improving maternal nutrition during lactation attenuates early imprinted adverse metabolic effects in the offspring born to obese dams. Three groups were studied: Control (C) dams, fed with standard diet; Western diet (WD) dams, fed with WD 1 month prior to gestation and during gestation and lactation; and Reversion (Rev) dams, fed as WD-dams, but moved to a standard diet during lactation. Macronutrient content, insulin, leptin and adiponectin levels were determined in milk. Phenotypic traits and circulating parameters in dams and their offspring were determined throughout lactation. Results showed that, at weaning, WD-dams displayed lower body weight and greater plasma insulin and non-esterified fatty acids levels than C-dams, and signs of hepatic steatosis. Milk from WD-dams showed lower protein content and insulin, leptin, and adiponectin levels during the entire or the late lactation. Rev-dams retained excess body fat content, but milk composition and most circulating parameters were not different from controls at late lactation and showed higher leptin mRNA levels in mammary gland than WD-dams. The offspring of WD-dams, but not that of Rev-dams, displayed higher body weight, adiposity, and circulating leptin and glucose levels than controls at weaning. In conclusion, dietary improvement during lactation prevents early adverse effects in offspring associated with maternal intake of an obesogenic diet, that may be related with the normalization of milk hormone levels.


Assuntos
Insulinas , Leptina , Adiponectina , Animais , Dieta Saudável , Feminino , Humanos , Lactação , Fenômenos Fisiológicos da Nutrição Materna , Leite/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA