Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Brain ; 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39350737

RESUMO

Mutations in the PRKN gene encoding the protein parkin cause autosomal recessive juvenile parkinsonism (ARJP). Harnessing this mutation to create an early-onset Parkinson's disease mouse model would provide a unique opportunity to clarify the mechanisms involved in the neurodegenerative process and lay the groundwork for the development of neuroprotective strategies. To this end, we created a knock-in mouse carrying the homozygous PrknR275W mutation, which is the missense mutation with the highest allelic frequency in PRKN patients. We evaluated the anatomical and functional integrity of the nigrostriatal dopamine (DA) pathway, as well as motor behaviour in PrknR275W mice of both sexes. We report here that PrknR275W mice show early DA neuron dysfunction, age-dependent loss of DA neurons in the substantia nigra, decreased DA content and stimulus-evoked DA release in the striatum, and progressive motor impairment. Together, these data show that the PrknR275W mouse recapitulates key features of ARJP. Thus, these studies fill a critical need in the field by introducing a promising new Parkinson's disease model in which to study causative mechanisms of the disease and test therapeutic strategies.

2.
Rev Endocr Metab Disord ; 24(6): 1031-1044, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37552352

RESUMO

The initial step for the differential diagnosis of hypoglycemia is to determine whether it is hyperinsulinemic or non hyperinsulinemic. Existing literature discusses drug-related hypoglycemia, but it misses a focus on drug-induced hyperinsulinemic hypoglycemia (DHH). Here we reviewed the association existing between drugs and hyperinsulinemic hypoglycemia. We primarily selected on the main electronic databases (MEDLINE, EMBASE, Web of Science, and SCOPUS) the reviews on drug-induced hypoglycemia. Among the drugs listed in the reviews, we selected the ones linked to an increase in insulin secretion. For the drugs missing a clear association with insulin secretion, we investigated the putative mechanism underlying hypoglycemia referring to the original papers. Our review provides a list of the most common agents associated with hyperinsulinemic hypoglycemia (HH), in order to facilitate both the recognition and the prevention of DHH. We also collected data about the responsiveness of DHH to diazoxide or octreotide.


Assuntos
Hiperinsulinismo , Hipoglicemia , Humanos , Hipoglicemia/induzido quimicamente , Hipoglicemia/complicações , Hipoglicemia/tratamento farmacológico , Hiperinsulinismo/induzido quimicamente , Hiperinsulinismo/complicações , Hiperinsulinismo/diagnóstico , Diazóxido/efeitos adversos , Secreção de Insulina
3.
Endocr Regul ; 57(1): 128-137, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37285460

RESUMO

Objective. Kabuki syndrome (KS) is associated with hyperinsulinemic hypoglycemia (HH) in 0.3-4% of patients, thus exceeding the prevalence in the general population. HH association is stronger for KS type 2 (KDM6A-KS, OMIM #300867) than KS type 1 (KMT2D-KS, OMIM #147920). Both the disease-associated genes, KMD6A and KMT2D, modulate the chromatin dynamic. As such, KS is considered to be the best characterized pediatric chromatinopathy. However, the exact pathogenetic mechanisms leading to HH in this syndrome remain still unclear. Methods. We selected on the electronic database PubMed all articles describing or hypothesizing the mechanisms underlying the dysregulated insulin secretion in KS. Results. The impact on the gene expression due to the KDM6A or KMT2D function loss may lead to a deregulated pancreatic ß-cell differentiation during embryogenesis. Moreover, both KMT2D gene and KDM6A gene are implicated in promoting the transcription of essential pancreatic ß-cell genes and in regulating the metabolic pathways instrumental for insulin release. Somatic KMT2D or KDM6A mutations have also been described in several tumor types, including insulinoma, and have been associated with metabolic pathways promoting pancreatic cell proliferation. Conclusions. The impact of pathogenic variants in KDM6A and KDM2D genes on ß-cell insulin release remains to be fully clarified. Understanding this phenomenon may provide valuable insight into the physiological mechanisms of insulin release and into the pathological cascade causing hyperinsulinism in KS. The identification of these molecular targets may open new therapeutic opportunities based on epigenetic modifiers.


Assuntos
Hiperinsulinismo , Hipoglicemia , Humanos , Criança , Mutação , Hiperinsulinismo/complicações , Hiperinsulinismo/genética , Histona Desmetilases/genética , Insulina , Hipoglicemia/genética
4.
Am J Perinatol ; 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848046

RESUMO

The prompt identification of at-risk newborns for drug-induced hypoglycemia can minimize the risk for adverse side effects, inappropriate investigations, and considerable unnecessary costs. Existing literature discusses drug-induced hypoglycemia, but a systematic description of neonatal hypoglycemia induced or exacerbated by maternal medications is missing. We reviewed the association between neonatal hypoglycemia and maternal medications. We systematically searched the literature according to the PICOS model on drug-induced hypoglycemia in neonates born to nondiabetic women treated with medications during the pregnancy or the labor. The main outcomes of the review were: (1) prevalence of hypoglycemia, (2) risk factors and potential confounders, (3) time at onset and severity of hypoglycemia, (4) dose-response gradient, (5) metabolic features of hypoglycemia, (6) modalities to treat hypoglycemia, and (7) quality of the studies. We included 69 studies in this review and we identified 11 groups of maternal drugs related to neonatal hypoglycemia. Results were classified for each outcome. Our review aims at supporting clinicians in the identification of the newborn at risk for hypoglycemia and in the differential diagnosis of neonatal hypoglycemia. Further studies are necessary to assess the risk of neonatal hypoglycemia associated with common maternal medications. KEY POINTS: · A systematic description of neonatal hypoglycemia induced or exacerbated by maternal medications is missing.. · In our review we identified 11 groups of maternal drugs related to neonatal hypoglycemia.. · Our review aims at supporting clinicians in the identification of the newborn at risk for hypoglycemia..

5.
Acta Neuropathol ; 144(1): 81-106, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35596783

RESUMO

The Excitatory Amino Acid Transporter 2 (EAAT2) accounts for 80% of brain glutamate clearance and is mainly expressed in astrocytic perisynaptic processes. EAAT2 function is finely regulated by endocytic events, recycling to the plasma membrane and degradation. Noteworthy, deficits in EAAT2 have been associated with neuronal excitotoxicity and neurodegeneration. In this study, we show that EAAT2 trafficking is impaired by the leucine-rich repeat kinase 2 (LRRK2) pathogenic variant G2019S, a common cause of late-onset familial Parkinson's disease (PD). In LRRK2 G2019S human brains and experimental animal models, EAAT2 protein levels are significantly decreased, which is associated with elevated gliosis. The decreased expression of the transporter correlates with its reduced functionality in mouse LRRK2 G2019S purified astrocytic terminals and in Xenopus laevis oocytes expressing human LRRK2 G2019S. In LRRK2 G2019S knock-in mouse brain, the correct surface localization of the endogenous transporter is impaired, resulting in its interaction with a plethora of endo-vesicular proteins. Mechanistically, we report that pathogenic LRRK2 kinase activity delays the recycling of the transporter to the plasma membrane via Rabs inactivation, causing its intracellular re-localization and degradation. Taken together, our results demonstrate that pathogenic LRRK2 interferes with the physiology of EAAT2, pointing to extracellular glutamate overload as a possible contributor to neurodegeneration in PD.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Doença de Parkinson , Sistema X-AG de Transporte de Aminoácidos , Animais , Glutamatos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Camundongos , Mutação , Neurônios/patologia , Doença de Parkinson/patologia
6.
Brain ; 144(5): 1509-1525, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-33876242

RESUMO

Parkinson's disease is characterized by the progressive degeneration of dopaminergic neurons within the substantia nigra pars compacta and the presence of protein aggregates in surviving neurons. The LRRK2 G2019S mutation is one of the major determinants of familial Parkinson's disease cases and leads to late-onset Parkinson's disease with pleomorphic pathology, including α-synuclein accumulation and deposition of protein inclusions. We demonstrated that LRRK2 phosphorylates N-ethylmaleimide sensitive factor (NSF). We observed aggregates containing NSF in basal ganglia specimens from patients with Parkinson's disease carrying the G2019S variant, and in cellular and animal models expressing the LRRK2 G2019S variant. We found that LRRK2 G2019S kinase activity induces the accumulation of NSF in toxic aggregates. Of note, the induction of autophagy cleared NSF aggregation and rescued motor and cognitive impairment observed in aged hG2019S bacterial artificial chromosome (BAC) mice. We suggest that LRRK2 G2019S pathological phosphorylation impacts on NSF biochemical properties, thus causing the formation of cytotoxic protein inclusions.


Assuntos
Encéfalo/patologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Proteínas Sensíveis a N-Etilmaleimida/metabolismo , Doença de Parkinson/genética , Agregação Patológica de Proteínas/genética , Animais , Autofagia/fisiologia , Humanos , Mutação , Doença de Parkinson/patologia , Fosforilação , Agregação Patológica de Proteínas/patologia
7.
J Neurochem ; 157(2): 297-311, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33206398

RESUMO

Parkinson's disease is a common neurodegenerative disorder and is clinically characterized by bradykinesia, rigidity, and resting tremor. Missense mutations in the leucine-rich repeat protein kinase-2 gene (LRRK2) are a recognized cause of inherited Parkinson's disease. The physiological and pathological impact of LRRK2 is still obscure, but accumulating evidence indicates that LRRK2 orchestrates diverse aspects of membrane trafficking, such as membrane fusion and vesicle formation and transport along actin and tubulin tracks. In the present review, we focus on the special relation between LRRK2 and synaptic vesicles. LRRK2 binds and phosphorylates key actors within the synaptic vesicle cycle. Accordingly, alterations in dopamine and glutamate transmission have been described upon LRRK2 manipulations. However, the different modeling strategies and phenotypes observed require a critical approach to decipher the outcome of LRRK2 at the pre-synaptic site.


Assuntos
Endocitose/fisiologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Terminações Pré-Sinápticas/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Humanos , Neurônios/metabolismo , Doença de Parkinson/metabolismo
8.
J Cell Sci ; 132(18)2019 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-31427429

RESUMO

Nup358 (also known as RanBP2) is a member of the large nucleoporin family that constitutes the nuclear pore complex. Depending on the cell type and the physiological state, Nup358 interacts with specific partner proteins and influences distinct mechanisms independent of its role in nucleocytoplasmic transport. Here, we provide evidence that Nup358 associates selectively with the axon initial segment (AIS) of mature neurons, mediated by the AIS scaffold protein ankyrin-G (AnkG, also known as Ank3). The N-terminus of Nup358 is demonstrated to be sufficient for its localization at the AIS. Further, we show that Nup358 is expressed as two isoforms, one full-length and another shorter form of Nup358. These isoforms differ in their subcellular distribution in neurons and expression level during neuronal development. Overall, the present study highlights an unprecedented localization of Nup358 within the AIS and suggests its involvement in neuronal function.This article has an associated First Person interview with the first author of the paper.


Assuntos
Anquirinas/metabolismo , Axônios/metabolismo , Embrião de Mamíferos/metabolismo , Chaperonas Moleculares/metabolismo , Neurônios/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Animais , Anquirinas/genética , Western Blotting , Células HeLa , Humanos , Imunoprecipitação , Camundongos , Chaperonas Moleculares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
9.
Biochem Soc Trans ; 49(5): 2063-2072, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34495322

RESUMO

Parkinson's disease (PD) is an age-related neurodegenerative disorder, clinically characterized by bradykinesia, rigidity, and resting tremor. Leucine-Rich Repeat Kinase 2 (LRRK2) is a large, multidomain protein containing two enzymatic domains. Missense mutations in its coding sequence are amongst the most common causes of familial PD. The physiological and pathological impact of LRRK2 is still obscure, but accumulating evidence supports a role for LRRK2 in membrane and vesicle trafficking, mainly functioning in the endosome-recycling system, (synaptic) vesicle trafficking, autophagy, and lysosome biology. LRRK2 binds and phosphorylates key regulators of the endomembrane systems and is dynamically localized at the Golgi. The impact of LRRK2 on the Golgi may reverberate throughout the entire endomembrane system and occur in multiple intersecting pathways, including endocytosis, autophagy, and lysosomal function. This would lead to overall dysregulation of cellular homeostasis and protein catabolism, leading to neuronal dysfunction and accumulation of toxic protein species, thus underlying the possible neurotoxic effect of LRRK2 mutations causing PD.


Assuntos
Complexo de Golgi/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Lisossomos/metabolismo , Mutação de Sentido Incorreto , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Transdução de Sinais/genética , Animais , Autofagia/genética , Endocitose/genética , Endossomos/metabolismo , Humanos , Neurônios/metabolismo , Fosforilação/genética , Proteólise
10.
Bioorg Med Chem Lett ; 40: 127929, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33705903

RESUMO

A small set of trehalose-centered putative autophagy inducers was rationally designed and synthesized, with the aim to identify more potent and bioavailable autophagy inducers than free trehalose, and to acquire information about their molecular mechanism of action. Several robust, high yield routes to key trehalose intermediates and small molecule prodrugs (2-5), putative probes (6-10) and inorganic nanovectors (12a - thiol-PEG-triazole-trehalose constructs 11) were successfully executed, and compounds were tested for their autophagy-inducing properties. While small molecules 2-11 showed no pro-autophagic behavior at sub-millimolar concentrations, trehalose-bearing PEG-AuNPs 12a caused measurable autophagy induction at an estimated 40 µM trehalose concentration without any significant toxicity at the same concentration.


Assuntos
Autofagia/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Trealose/análogos & derivados , Trealose/farmacologia , Desenho de Fármacos , Ouro/química , Ouro/toxicidade , Células HeLa , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/toxicidade , Polietilenoglicóis/química , Polietilenoglicóis/toxicidade , Trealose/toxicidade
11.
J Cell Mol Med ; 23(12): 8505-8510, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31560168

RESUMO

Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of Parkinson's disease (PD). The LRRK2 physiological and pathological function is still debated. However, different experimental evidence based on LRRK2 cellular localization and LRRK2 protein interactors suggests that LRRK2 may be part and regulate a protein network modulating vesicle dynamics/trafficking. Interestingly, the synaptic vesicle protein SV2A is part of this protein complex. Importantly, SV2A is the binding site of the levetiracetam (LEV), a compound largely used in human therapy for epilepsy treatment. The binding of LEV to SV2A reduces the neuronal firing by the modulation of vesicle trafficking although by an unclear molecular mechanism. In this short communication, we have analysed the interaction between the LRRK2 and SV2A pathways by LEV treatment. Interestingly, LEV significantly counteracts the effect of LRRK2 G2019S pathological mutant expression in three different cellular experimental models. Our data strongly suggest that LEV treatment may have a neuroprotective effect on LRRK2 pathological mutant toxicity and that LEV repositioning could be a viable compound for PD treatment.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Levetiracetam/farmacologia , Mutação , Neurônios/efeitos dos fármacos , Vesículas Sinápticas/metabolismo , Animais , Anticonvulsivantes/farmacologia , Linhagem Celular Tumoral , Células Cultivadas , Epilepsia/tratamento farmacológico , Epilepsia/genética , Epilepsia/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Glicoproteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Neuritos/efeitos dos fármacos , Neuritos/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Células PC12 , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Ligação Proteica , Ratos , Transdução de Sinais/efeitos dos fármacos
12.
J Neurochem ; 150(3): 264-281, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31148170

RESUMO

Leucine-rich repeat kinase 2 (LRRK2) is a large multidomain scaffolding protein with kinase and GTPase activities involved in synaptic vesicle (SV) dynamics. While its role in Parkinson's disease has been largely investigated, little is known about LRRK2 physiological role and until now few proteins have been described as substrates. We have previously demonstrated that LRRK2 through its WD40 domain interacts with synapsin I, an important SV-associated phosphoprotein involved in neuronal development and in the regulation of neurotransmitter release. To test whether synapsin I is substrate for LRRK2 and characterize the properties of its phosphorylation, we used in vitro kinase and binding assays as well as cellular model and site-direct mutagenesis. Using synaptosomes in superfusion, patch-clamp recordings in autaptic WT and synapsin I KO cortical neurons and SypHy assay on primary cortical culture from wild-type and BAC human LRRK2 G2019S mice we characterized the role of LRRK2 kinase activity on glutamate release and SV trafficking. Here we reported that synapsin I is phosphorylated by LRRK2 and demonstrated that the interaction between LRRK2 WD40 domain and synapsin I is crucial for this phosphorylation. Moreover, we showed that LRRK2 phosphorylation of synapsin I at threonine 337 and 339 significantly reduces synapsin I-SV/actin interactions. Using complementary experimental approaches, we demonstrated that LRRK2 controls glutamate release and SV dynamics in a kinase activity and synapsin I-dependent manner. Our findings show that synapsin I is a LRRK2 substrate and describe a novel mechanisms of regulation of glutamate release by LRRK2 kinase activity.


Assuntos
Ácido Glutâmico/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Sinapsinas/metabolismo , Transmissão Sináptica/fisiologia , Animais , Encéfalo/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Fosforilação , Vesículas Sinápticas/metabolismo
13.
Brain ; 141(9): 2772-2794, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30059965

RESUMO

Autism spectrum disorders are neurodevelopmental conditions with diverse aetiologies, all characterized by common core symptoms such as impaired social skills and communication, as well as repetitive behaviour. Cell adhesion molecules, receptor tyrosine kinases and associated downstream signalling have been strongly implicated in both neurodevelopment and autism spectrum disorders. We found that downregulation of the cell adhesion molecule NEGR1 or the receptor tyrosine kinase fibroblast growth factor receptor 2 (FGFR2) similarly affects neuronal migration and spine density during mouse cortical development in vivo and results in impaired core behaviours related to autism spectrum disorders. Mechanistically, NEGR1 physically interacts with FGFR2 and modulates FGFR2-dependent extracellular signal-regulated kinase (ERK) and protein kinase B (AKT) signalling by decreasing FGFR2 degradation from the plasma membrane. Accordingly, FGFR2 overexpression rescues all defects due to Negr1 knockdown in vivo. Negr1 knockout mice present phenotypes similar to Negr1-downregulated animals. These data indicate that NEGR1 and FGFR2 cooperatively regulate cortical development and suggest a role for defective NEGR1-FGFR2 complex and convergent downstream ERK and AKT signalling in autism spectrum disorders.


Assuntos
Transtorno do Espectro Autista/fisiopatologia , Moléculas de Adesão Celular Neuronais/fisiologia , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/fisiologia , Animais , Transtorno do Espectro Autista/metabolismo , Comportamento Animal/fisiologia , Moléculas de Adesão Celular Neuronais/metabolismo , Membrana Celular/metabolismo , Movimento Celular , Córtex Cerebral/crescimento & desenvolvimento , Espinhas Dendríticas/fisiologia , Modelos Animais de Doenças , Regulação para Baixo , Células HEK293 , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurogênese , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais/fisiologia
14.
Int J Mol Sci ; 20(3)2019 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-30754623

RESUMO

Mutations in the PRKN gene (encoding parkin) have been linked to the most frequent known cause of recessive Parkinson's disease (PD), and parkin dysfunction represents a risk factor for sporadic PD. Parkin is widely neuroprotective through different cellular pathways, as it protects dopaminergic neurons from apoptosis in a series of cellular and animal models of PD. The mitochondrial protein apoptosis-inducing factor (AIF) is an important cell death effector, which, upon cellular stress in many paradigms, is redistributed from the mitochondria to the nucleus to function as a proapoptotic factor, mostly independent of caspase activity, while in normal mitochondria it functions as an antiapoptotic factor. AIF is known to participate in dopaminergic neuron loss in experimental PD models and in patients with PD. We, therefore, investigated possible crosstalk between parkin and AIF. By using immunoprecipitation and proximity ligation assays, we demonstrated a physical interaction between the two proteins. Nuclear AIF translocation was significantly reduced by parkin expression in neuroblastoma SH-SY5Y cells after exposure to an apoptogenic stimulus. These results were confirmed in primary murine cortical neurons, which showed a higher nuclear translocation of AIF in parkin-deficient neurons upon an excitotoxic stimulus. Our results indicate that the interaction of parkin with AIF interferes with the nuclear translocation of AIF, which might contribute to the neuroprotective activity of parkin.


Assuntos
Fator de Indução de Apoptose/metabolismo , Neurônios/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Linhagem Celular , Núcleo Celular/metabolismo , Imunofluorescência , Técnicas de Silenciamento de Genes , Humanos , Imunoprecipitação , Ligação Proteica , Transporte Proteico , Ubiquitina-Proteína Ligases/genética
15.
Appl Microbiol Biotechnol ; 102(3): 1429-1441, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29189902

RESUMO

Iron exopolysaccharide nanoparticles were biogenerated during ferric citrate fermentation by Klebsiella oxytoca DSM 29614. Before investigating their effects on Tuber borchii ("bianchetto" truffle) mycelium growth and morphology, they were tested on human K562 cell line and Lentinula edodes pure culture and shown to be non-toxic. Using these nanoparticles as iron supplement, the truffles showed extremely efficient iron uptake of over 300 times that of a commercial product. This avoided morphological changes in T. borchii due to lack of iron during growth and, with optimum nanoparticle dosage, increased growth without cell wall disruption or alteration of protoplasmatic hyphal content, the nuclei, mitochondria, and rough endoplasmic reticula being preserved. No significant modifications in gene expression were observed. These advantages derive from the completely different mechanism of iron delivery to mycelia compared to commercial iron supplements. The present data, in fact, show the nanoparticles attached to the cell wall, then penetrating it non-destructively without damage to cell membrane, mitochondria, chromatin, or ribosome. Low dosage significantly improved mycelium growth, without affecting hyphal morphology. Increases in hyphal diameter and septal distance indicated a healthier state of the mycelia compared to those grown in the absence of iron or with a commercial iron supplement. These positive effects were confirmed by measuring fungal biomass as mycelium dry weight, total protein, and ergosterol content. This "green" method for biogenerating iron exopolysaccharide nanoparticles offers many advantages, including significant economic savings, without toxic effects on the ectomycorrhizal fungus, opening the possibility of using them as iron supplements in truffle plantations.


Assuntos
Compostos Férricos/química , Micorrizas/efeitos dos fármacos , Nanopartículas/química , Polissacarídeos Bacterianos/biossíntese , Fermentação , Compostos Férricos/farmacologia , Humanos , Ferro/química , Células K562 , Klebsiella oxytoca/metabolismo , Micélio/efeitos dos fármacos , Micélio/crescimento & desenvolvimento , Micorrizas/crescimento & desenvolvimento , Polissacarídeos Bacterianos/química
16.
Int J Mol Sci ; 18(11)2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29165341

RESUMO

Myogenic differentiation is triggered, among other situations, in response to muscle damage for regenerative purposes. It has been shown that during myogenic differentiation, myotubes release extracellular vesicles (EVs) which participate in the signalling pattern of the microenvironment. Here we investigated whether EVs released by myotubes exposed or not to mild oxidative stress modulate the behaviour of targeted differentiating myoblasts and macrophages to promote myogenesis. We found that EVs released by oxidatively challenged myotubes (H2O2-EVs) are characterized by an increased loading of nucleic acids, mainly DNA. In addition, incubation of myoblasts with H2O2-EVs resulted in a significant decrease of myotube diameter, myogenin mRNA levels and myosin heavy chain expression along with an upregulation of proliferating cell nuclear antigen: these effects collectively lead to an increase of recipient myoblast proliferation. Notably, the EVs from untreated myotubes induced an opposite trend in myoblasts, that is, a slight pro-differentiation effect. Finally, H2O2-EVs were capable of eliciting an increased interleukin 6 mRNA expression in RAW264.7 macrophages. Notably, this is the first demonstration that myotubes communicate with surrounding macrophages via EV release. Collectively, the data reported herein suggest that myotubes, depending on their conditions, release EVs carrying differential signals which could contribute to finely and coherently orchestrate the muscle regeneration process.


Assuntos
Vesículas Extracelulares/metabolismo , Desenvolvimento Muscular , Fibras Musculares Esqueléticas/metabolismo , Estresse Oxidativo , Animais , Linhagem Celular , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Espaço Intracelular/metabolismo , Macrófagos/metabolismo , Camundongos , Mioblastos/metabolismo
17.
Mol Cell Proteomics ; 13(3): 733-48, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24382801

RESUMO

A complex and still not comprehensively resolved panel of transmembrane proteins regulates the outgrowth and the subsequent morphological and functional development of neuronal processes. In order to gain a more detailed description of these events at the molecular level, we have developed a cell surface biotinylation assay to isolate, detect, and quantify neuronal membrane proteins. When we applied our assay to investigate neuron maturation in vitro, we identified 439 differentially expressed proteins, including 20 members of the immunoglobulin superfamily. Among these candidates, we focused on Negr1, a poorly described cell adhesion molecule. We demonstrated that Negr1 controls the development of neurite arborization in vitro and in vivo. Given the tight correlation existing among synaptic cell adhesion molecules, neuron maturation, and a number of neurological disorders, our assay results are a useful tool that can be used to support the understanding of the molecular bases of physiological and pathological brain function.


Assuntos
Bioensaio/métodos , Moléculas de Adesão Celular Neuronais/metabolismo , Membrana Celular/metabolismo , Dendritos/metabolismo , Animais , Biotinilação , Diferenciação Celular , Forma Celular , Células Cultivadas , Espinhas Dendríticas/metabolismo , Inativação Gênica , Células HEK293 , Humanos , Proteínas de Membrana/isolamento & purificação , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese , Sinapses/metabolismo
18.
J Neurochem ; 135(6): 1242-56, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26375402

RESUMO

Leucine-rich repeat kinase 2 (LRRK2) is a causative gene for Parkinson's disease, but the physiological function and the mechanism(s) by which the cellular activity of LRRK2 is regulated are poorly understood. Here, we identified p21-activated kinase 6 (PAK6) as a novel interactor of the GTPase/ROC domain of LRRK2. p21-activated kinases are serine-threonine kinases that serve as targets for the small GTP binding proteins Cdc42 and Rac1 and have been implicated in different morphogenetic processes through remodeling of the actin cytoskeleton such as synapse formation and neuritogenesis. Using an in vivo neuromorphology assay, we show that PAK6 is a positive regulator of neurite outgrowth and that LRRK2 is required for this function. Analyses of post-mortem brain tissue from idiopathic and LRRK2 G2019S carriers reveal an increase in PAK6 activation state, whereas knock-out LRRK2 mice display reduced PAK6 activation and phosphorylation of PAK6 substrates. Taken together, these results support a critical role of LRRK2 GTPase domain in cytoskeletal dynamics in vivo through the novel interactor PAK6, and provide a valuable platform to unravel the mechanism underlying LRRK2-mediated pathophysiology. We propose p21-activated kinase 6 (PAK6) as a novel interactor of leucine-rich repeat kinase 2 (LRRK2), a kinase involved in Parkinson's disease (PD). In health, PAK6 regulates neurite complexity in the brain and LRRK2 is required for its function, (a) whereas PAK6 is aberrantly activated in LRRK2-linked PD brain (b) suggesting that LRRK2 toxicity is mediated by PAK6.


Assuntos
Citoesqueleto de Actina/metabolismo , Leucina/genética , Neuritos/metabolismo , Proteínas Serina-Treonina Quinases/genética , Quinases Ativadas por p21/genética , Animais , Encéfalo/metabolismo , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Mamíferos/metabolismo , Camundongos , Mutação/genética , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Quinases Ativadas por p21/metabolismo
19.
Genes (Basel) ; 15(3)2024 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-38540422

RESUMO

The immunoglobulin LAMP/OBCAM/NTM (IgLON) family of cell adhesion molecules comprises five members known for their involvement in establishing neural circuit connectivity, fine-tuning, and maintenance. Mutations in IgLON genes result in alterations in these processes and can lead to neuropsychiatric disorders. The two IgLON family members NEGR1 and OPCML share common links with several of them, such as schizophrenia, autism, and major depressive disorder. However, the onset and the underlying molecular mechanisms have remained largely unresolved, hampering progress in developing therapies. NEGR1 and OPCML are evolutionarily conserved in teleosts like the zebrafish (Danio rerio), which is excellently suited for disease modelling and large-scale screening for disease-ameliorating compounds. To explore the potential applicability of zebrafish for extending our knowledge on NEGR1- and OPCML-linked disorders and to develop new therapeutic strategies, we investigated the spatio-temporal expression of the two genes during early stages of development. negr1 and opcml are expressed maternally and subsequently in partially distinct domains of conserved brain regions. Other areas of expression in zebrafish have not been reported in mammals to date. Our results indicate that NEGR1 and OPCML may play roles in neural circuit development and function at stages earlier than previously anticipated. A detailed functional analysis of the two genes based on our findings could contribute to understanding the mechanistic basis of related psychiatric disorders.


Assuntos
Transtorno Depressivo Maior , Esquizofrenia , Animais , Humanos , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Moléculas de Adesão Celular/genética , Encéfalo/metabolismo , Imunoglobulinas/genética , Mamíferos/metabolismo , Proteínas Ligadas por GPI/metabolismo
20.
Int J Neonatal Screen ; 10(3)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39051409

RESUMO

Methylmalonyl-CoA epimerase enzyme (MCEE) is responsible for catalyzing the isomeric conversion between D- and L-methylmalonyl-CoA, an intermediate along the conversion of propionyl-CoA to succinyl-CoA. A dedicated test for MCEE deficiency is not included in the newborn screening (NBS) panels but it can be incidentally identified when investigating methylmalonic acidemia and propionic acidemia. Here, we report for the first time the biochemical description of a case detected by NBS. The NBS results showed increased levels of propionylcarnitine (C3) and 2-methylcitric acid (MCA), while methylmalonic acid (MMA) and homocysteine (Hcy) were within the reference limits. Confirmatory analyses revealed altered levels of metabolites, including MCA and MMA, suggesting a block in the propionate degradation pathway. The analysis of methylmalonic pathway genes by next-generation sequencing (NGS) allowed the identification of the known homozygous nonsense variation c.139C>T (p.R47X) in exon 2 of the MCE gene. Conclusions: Elevated concentrations of C3 with a slight increase in MCA and normal MMA and Hcy during NBS should prompt the consideration of MCEE deficiency in differential diagnosis. Increased MMA levels may be negligible at NBS as they may reach relevant values beyond the first days of life and thus could be identified only in confirmatory analyses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA