RESUMO
Benign prostate hyperplasia (BPH) is caused by the nonmalignant enlargement of the transition zone of the prostate gland, leading to lower urinary tract symptoms. Although current medical treatments are unsatisfactory in many patients, the limited understanding of the mechanisms driving disease progression prevents the development of alternative therapeutic strategies. The probasin-prolactin (Pb-PRL) transgenic mouse recapitulates many histopathological features of human BPH. Herein, these alterations parallel urodynamic disturbance reminiscent of lower urinary tract symptoms. Single-cell RNA-sequencing analysis of Pb-PRL mouse prostates revealed that their epithelium mainly includes low-androgen signaling cell populations analogous to Club/Hillock cells enriched in the aged human prostate. These intermediate cells are predicted to result from the reprogramming of androgen-dependent luminal cells. Pb-PRL mouse prostates exhibited increased vulnerability to oxidative stress due to reduction of antioxidant enzyme expression. One-month treatment of Pb-PRL mice with anethole trithione (ATT), a specific inhibitor of mitochondrial ROS production, reduced prostate weight and voiding frequency. In human BPH-1 epithelial cells, ATT decreased mitochondrial metabolism, cell proliferation, and stemness features. ATT prevented the growth of organoids generated by sorted Pb-PRL basal and LSCmed cells, the two major BPH-associated, androgen-independent epithelial cell compartments. Taken together, these results support cell plasticity as a driver of BPH progression and therapeutic resistance to androgen signaling inhibition, and identify antioxidant therapy as a promising treatment of BPH.
Assuntos
Sintomas do Trato Urinário Inferior , Hiperplasia Prostática , Masculino , Humanos , Camundongos , Animais , Idoso , Androgênios/farmacologia , Androgênios/metabolismo , Próstata/patologia , Hiperplasia Prostática/metabolismo , Antioxidantes/farmacologia , Plasticidade Celular , Hiperplasia/patologia , Chumbo/metabolismo , Chumbo/uso terapêutico , Camundongos Transgênicos , Prolactina/metabolismo , Prolactina/uso terapêutico , Células Epiteliais/metabolismo , Sintomas do Trato Urinário Inferior/metabolismo , Sintomas do Trato Urinário Inferior/patologiaRESUMO
Transforming growth factor ß (TGFß) is widely recognised as an important factor that regulates many steps of normal mammary gland (MG) development, including branching morphogenesis, functional differentiation and involution. Tif1γ has previously been reported to temporally and spatially control TGFß signalling during early vertebrate development by exerting negative effects over SMAD4 availability. To evaluate the contribution of Tif1 γ to MG development, we developed a Cre/LoxP system to specifically invalidate the Tif1g gene in mammary epithelial cells in vivo. Tif1g-null mammary gland development appeared to be normal and no defects were observed during the lifespan of virgin mice. However, a lactation defect was observed in mammary glands of Tif1g-null mice. We demonstrate that Tif1 γ is essential for the terminal differentiation of alveolar epithelial cells at the end of pregnancy and to ensure lactation. Tif1 γ appears to play a crucial role in the crosstalk between TGFß and prolactin pathways by negatively regulating both PRL receptor expression and STAT5 phosphorylation, thereby impairing the subsequent transactivation of PRL target genes. Using HC11 cells as a model, we demonstrate that the effects of Tif1g knockdown on lactation depend on both SMAD4 and TGFß. Interestingly, we found that the Tif1γ expression pattern in mammary epithelial cells is almost symmetrically opposite to that described for TGFß. We propose that Tif1γ contributes to the repression of TGFß activity during late pregnancy and prevents lactation by inhibiting SMAD4.
Assuntos
Diferenciação Celular/genética , Células Epiteliais/citologia , Lactação/genética , Glândulas Mamárias Animais/citologia , Proteína Smad4/antagonistas & inibidores , Fatores de Transcrição/fisiologia , Animais , Células Epiteliais/fisiologia , Feminino , Masculino , Glândulas Mamárias Animais/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Gravidez , Transdução de Sinais/genética , Proteína Smad4/fisiologiaRESUMO
Transformed and tumoral cells share the characteristic of being able to proliferate even when external calcium concentration is very low. We have investigated whether Human Embryonic Kidney 293 cells, human hepatoma cell Huh-7 and HeLa cells were able to proliferate when kept 72h in complete culture medium without external calcium. Our data showed that cell proliferation rate was similar over a range of external calcium concentration (2µM to 1.8mM). Incubation in the absence of external calcium for 72h had no significant effect on endoplasmic reticulum (ER) Ca(2+) contents but resulted in a significant decrease in cytosolic free calcium concentration in all 3 cell types. Cell proliferation rates were dependent on Orai1 and Orai3 expression levels in HEK293 and HeLa cells. Silencing Orai1 or Orai3 resulted in a 50% reduction in cell proliferation rate. Flow cytometry analysis showed that Orai3 induced a small but significant increase in cell number in G2/M phase. RO-3306, a cdk-1 inhibitor, induced a 90% arrest in G2/M reversible in less than 15min. Our data showed that progression through G2/M phase after release from RO-3306-induced cell cycle arrest was slower in both Orai1 and Orai3 knock-downs. Overexpressing Orai1, Orai3 and the dominant negative non-permeant mutants E106Q-Orai1 and E81Q-Orai3 induced a 50% increase in cell proliferation rate in HEK293 cells. Our data clearly demonstrated that Orai1 and Orai3 proteins are more important than calcium influx to control cell proliferation in some cell lines and that this process is probably independent of ICRAC and Iarc.
Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Ciclo Celular , Proliferação de Células , DNA/metabolismo , Regulação para Baixo , Citometria de Fluxo , Células HEK293 , Células HeLa , Humanos , Espaço Intracelular/metabolismo , Proteína ORAI1RESUMO
BACKGROUND: Permixon®, the hexanic lipidosterolic extract of saw palmetto Serenoa repens (LSESr), has shown properties that highlight its benefit in the management of benign prostate hyperplasia (BPH). To address its actual anti-inflammatory potency, we used a unique pro-inflammatory mouse model of prostate hyperplasia involving prostate-specific over-expression of prolactin transgene (Pb-Prl). METHODS: Six month-old Pb-Prl males were administered with Permixon® per os at the daily dose of 100 mg/kg for 28 days. Body and prostate weights were measured weekly and at sacrifice, respectively. Prostate histology was carefully assessed by a pathologist and detailed quantifications of epithelial and stromal compartments were performed using image analysis software. Luminal cell proliferation index was determined using Ki-67 immunostaining, and apoptosis using Bax/Bcl2 mRNA ratio. Tissue inflammation and fibrosis were assessed by histological analyses then quantified using CD45 immunostaining and picrosirius staining, respectively. Expression profiling of selected pro-inflammatory cytokines, chemokines, and chemokine receptors was performed by quantitative RT-PCR. RESULTS: In this model, Permixon® significantly decreased tissue weight and proliferation index specifically in the ventral lobe. Although treatment had no noticeable effect on epithelial histology of any lobe, it markedly reduced the histological hallmarks of inflammation in all lobes. This was confirmed by the global down-regulation of prostate pro-inflammatory cytokine profile, with significant reduction of CCR7, CXCL6, IL-6, and IL-17 expression. CONCLUSIONS: In this mouse model of prostate hyperplasia, Permixon® exerted potent anti-inflammatory properties in the whole prostate while anti-androgenic effects were lobe-specific, suggesting that distinct LSESr components may be involved in these effects. Our results support the beneficial role of Permixon® treatment for BPH. The relevance of CCR7, CXCL6, IL-6, and IL-17 as potential biomarkers to follow up BPH inflammatory status needs to be assessed.
Assuntos
Apoptose/efeitos dos fármacos , Inflamação/tratamento farmacológico , Extratos Vegetais/farmacologia , Hiperplasia Prostática/tratamento farmacológico , Serenoa/química , Animais , Citocinas/genética , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Imuno-Histoquímica , Inflamação/imunologia , Inflamação/patologia , Antígeno Ki-67/genética , Masculino , Camundongos , Camundongos Transgênicos , Tamanho do Órgão/efeitos dos fármacos , Hiperplasia Prostática/imunologia , Hiperplasia Prostática/patologia , RNA/química , RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estatísticas não Paramétricas , Proteína X Associada a bcl-2/genéticaRESUMO
Current androgen ablation therapies for prostate cancer are initially successful, but the frequent development of castration resistance urges the generation of alternative therapies and represents an important health concern. Prolactin/signal transducer and activator of transcription 5 (STAT5) signaling is emerging as a putative target for alternative treatment for prostate cancer. However, mechanistic data for its role in development or progression of prostate tumors are scarce. In vivo mouse studies found that local prolactin induced the amplification of prostate epithelial basal/stem cells. Because these cells are proposed cells of origin for prostate cancer and disease recurrence, we looked further into this amplification. Our results indicated that sustained Stat5 activation was associated with the occurrence of abnormal basal/stem cell clusters in prostate epithelium of prostate-specific prolactin-transgenic mice. Analysis of epithelial areas containing these clusters found high proliferation, Stat5 activation, and expression of stem cell antigen 1. Furthermore, enhanced prolactin signaling also led to amplification of a luminal cell population that was positive for stem cell antigen 1. These cells may originate from amplified basal/stem cells and might represent important progenitors for tumor development in prostate epithelium. These data provide a deeper understanding of the initial stages of prostate tumorigenesis induced by prolactin to help determine whether this hormone or its downstream messengers could be useful targets for prostate cancer treatment in the future.
Assuntos
Carcinogênese/metabolismo , Prolactina/metabolismo , Próstata/metabolismo , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais/fisiologia , Animais , Carcinogênese/patologia , Diferenciação Celular , Proliferação de Células , Masculino , Camundongos , Camundongos Transgênicos , Células-Tronco Neoplásicas , Prolactina/genética , Próstata/patologiaRESUMO
Prostate cancer (PCa) represents one of the most frequent diagnosed cancer in males worldwide. Due to routine screening tests and the efficiency of available treatments, PCa-related deaths have significantly decreased over the past decades. However, PCa remains a critical threat if detected at a late stage in which, cancer cells would have already detached from the primary tumor to spread and invade other parts of the body. Calcium (Ca2+) channels and their protein regulators are now considered as hallmarks of cancer and some of them have been well examined in PCa. Among these Ca2+ channels, isoform 3 of the ORAI channel family has been shown to regulate the proliferation of PCa cells via the Arachidonic Acid-mediated Ca2+ entry, requiring the involvement of STIM1 (Stromal Interaction Molecule 1). Still, no study has yet demonstrated a role of the "neglected" STIM2 isoform in PCa or if it may interact with ORAI3 to promote an oncogenic behavior. In this study, we demonstrate that ORAI3 and STIM2 are upregulated in human PCa tissues. In old KIMAP (Knock-In Mouse Prostate Adenocarcinoma) mice, ORAI3 and STIM2 mRNA levels were significantly higher than ORAI1 and STIM1. In vitro, we show that ORAI3-STIM2 interact under basal conditions in PC-3 cells. ORAI3 silencing increased Store Operated Ca2+ Entry (SOCE) and induced a significant increase of the cell population in G2/M phase of the cell cycle, consistent with the role of ORAI3 as a negative regulator of SOCE. Higher expression levels of CDK1-Y15/Cyclin B1 were detected and mitotic arrest-related death occurred after ORAI3 silencing, which resulted in activating Bax/Bcl-2-mediated apoptotic pathway and caspase-8 activation and cleavage. STIM2 and ORAI3 expression increased in M phase while STIM1 expression and SOCE amplitude significantly decreased. Taken together, ORAI3 -STIM2 complex allows a successful progression through mitosis of PCa cells by evading mitotic catastrophe.
RESUMO
OBJECTIVE: New therapeutic approaches are needed to improve the prognosis of glioblastoma (GBM) patients. METHODS: With the objective of identifying alternative oncogenic mechanisms to abnormally activated epidermal growth factor receptor (EGFR) signalling, one of the most common oncogenic mechanisms in GBM, we performed a comparative analysis of gene expression profiles in a series of 54 human GBM samples. We then conducted gain of function as well as genetic and pharmocological inhibition assays in GBM patient-derived cell lines to functionnally validate our finding. RESULTS: We identified that growth hormone receptor (GHR) signalling defines a distinct molecular subset of GBMs devoid of EGFR overexpression. GHR overexpression was detected in one third of patients and was associated with low levels of suppressor of cytokine signalling 2 (SOCS2) expression due to SOCS2 promoter hypermethylation. In GBM patient-derived cell lines, GHR signalling modulates the expression of proteins involved in cellular movement, promotes cell migration, invasion and proliferation in vitro and promotes tumourigenesis, tumour growth, and tumour invasion in vivo. GHR genetic and pharmacological inhibition reduced cell proliferation and migration in vitro. CONCLUSION: This study pioneers a new field of investigation to improve the prognosis of GBM patients.
Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Receptores ErbB/genética , Receptores ErbB/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Medicina de Precisão , Receptores da Somatotropina/genética , Receptores da Somatotropina/uso terapêuticoRESUMO
WS® 1541 is a phytopharmaceutical drug combination containing a lipophilic extract from fruits of Sabal serrulata (WS® 1473) and an aqueous ethanolic extract from roots of Urtica dioica (WS® 1031). It is approved in several countries worldwide for the treatment of lower urinary tract syndrome (LUTS) linked to benign prostate hyperplasia (BPH). Clinical studies have demonstrated the efficacy of this unique combination in the treatment of BPH-related LUTS. However, its mechanisms of action in vivo remain partly uncharacterized. The aim of this study was to take advantage of a validated mouse model of BPH to better characterize its growth-inhibitory and anti-inflammatory properties. We used the probasin-prolactin (Pb-PRL) transgenic mouse model in which prostate-specific overexpression of PRL results in several features of the human disease including tissue hypertrophy, epithelial hyperplasia, increased stromal cellularity, inflammation, and LUTS. Six-month-old heterozygous Pb-PRL male mice were randomly distributed to five groups (11-12 animals/group) orally treated for 28 consecutive days with WS® 1541 (300, 600, or 900 mg/kg/day), the 5α-reductase inhibitor finasteride used as reference (5 mg/kg/day) or vehicle (olive oil 5 ml/kg/day). Administration of WS® 1541 was well tolerated and caused a dose-dependent reduction of prostate weight (vs. vehicle) that was statistically significant at the two highest doses. This effect was accompanied by a reduction in prostate cell proliferation as assessed by lower Ki-67 expression (qPCR and immunohistochemistry). In contrast, finasteride had no or only a mild effect on these parameters. The growth-inhibitory activity of WS® 1541 was accompanied by a strong anti-inflammatory effect as evidenced by the reduced infiltration of cells expressing the leukocyte common antigen CD45. In sharp contrast, finasteride significantly increased the prostate inflammatory status according to this readout. Molecular profiling (qPCR) of 23 selected pro-inflammatory genes confirmed the strong anti-inflammatory potency of WS® 1541 compared to finasteride. Since treatment of WS® 1541 did not interfere with transgene expression and activity in the prostate of Pb-PRL mice, the effects observed in this study are entirely attributable to the intrinsic pharmacological action of the drug combination.
RESUMO
The canonical prolactin (PRL) Signal Transducer and Activator of Transcription (STAT) 5 pathway has been suggested to contribute to human prostate tumorigenesis via an autocrine/paracrine mechanism. The probasin (Pb)-PRL transgenic mouse models this mechanism by overexpressing PRL specifically in the prostate epithelium leading to strong STAT5 activation in luminal cells. These mice exhibit hypertrophic prostates harboring various pre-neoplastic lesions that aggravate with age and accumulation of castration-resistant stem/progenitor cells. As STAT5 signaling is largely predominant over other classical PRL-triggered pathways in Pb-PRL prostates, we reasoned that Pb-Cre recombinase-driven genetic deletion of a floxed Stat5a/b locus should prevent prostate tumorigenesis in so-called Pb-PRLïSTAT5 mice. Anterior and dorsal prostate lobes displayed the highest Stat5a/b deletion efficiency with no overt compensatory activation of other PRLR signaling cascade at 6 months of age; hence the development of tumor hallmarks was markedly reduced. Stat5a/b deletion also reversed the accumulation of stem/progenitor cells, indicating that STAT5 signaling regulates prostate epithelial cell hierarchy. Interestingly, ERK1/2 and AKT, but not STAT3 and androgen signaling, emerged as escape mechanisms leading to delayed tumor development in aged Pb-PRLïSTAT5 mice. Unexpectedly, we found that Pb-PRL prostates spontaneously exhibited age-dependent decline of STAT5 signaling, also to the benefit of AKT and ERK1/2 signaling. As a consequence, both Pb-PRL and Pb-PRLïSTAT5 mice ultimately displayed similar pathological prostate phenotypes at 18 months of age. This preclinical study provides insight on STAT5-dependent mechanisms of PRL-induced prostate tumorigenesis and alternative pathways bypassing STAT5 signaling down-regulation upon prostate neoplasia progression.
RESUMO
Active surveillance (AS) is an attractive alternative to immediate treatment for men with low-risk prostate cancer. Thus, the identification of environmental factors that promote the progression of indolent disease towards aggressive stages is critical to optimize clinical management. Epidemiological studies suggest that calcium-rich diets contribute to an increased risk of developing prostate cancer and that vitamin D reduces this risk. However, the potential effect of these nutrients on the progression of early-stage prostate tumours is uncertain, as studies in this setting are scarce and have not provided unambiguous conclusions. By contrast, the results of a preclinical study from our own group demonstrate that a diet high in calcium dose-dependently accelerated the progression of early-stage prostate tumours and that dietary vitamin D prevented this effect. The extent to which the conclusions of preclinical and epidemiological studies support a role for calcium and vitamin D and the relevance of monitoring and adjustment of calcium and/or vitamin D intake in patients on AS require further investigation.
Assuntos
Cálcio da Dieta/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Vitamina D/uso terapêutico , Humanos , Masculino , Vitaminas/uso terapêuticoRESUMO
Active surveillance has emerged as an alternative to immediate treatment for men with low-risk prostate cancer. Accordingly, identification of environmental factors that facilitate progression to more aggressive stages is critical for disease prevention. Although calcium-enriched diets have been speculated to increase prostate cancer risk, their impact on early-stage tumors remains unexplored. In this study, we addressed this issue with a large interventional animal study. Mouse models of fully penetrant and slowly evolving prostate tumorigenesis showed that a high calcium diet dramatically accelerated the progression of prostate intraepithelial neoplasia, by promoting cell proliferation, micro-invasion, tissue inflammation, and expression of acknowledged prostate cancer markers. Strikingly, dietary vitamin D prevented these calcium-triggered tumorigenic effects. Expression profiling and in vitro mechanistic studies showed that stimulation of PC-3 cells with extracellular Ca2+ resulted in an increase in cell proliferation rate, store-operated calcium entry (SOCE) amplitude, cationic channel TRPC6, and calcium sensing receptor (CaSR) expression. Notably, administration of the active vitamin D metabolite calcitriol reversed all these effects. Silencing CaSR or TRPC6 expression in calcium-stimulated PC3 cells decreased cell proliferation and SOCE. Overall, our results demonstrate the protective effects of vitamin D supplementation in blocking the progression of early-stage prostate lesions induced by a calcium-rich diet. Cancer Res; 77(2); 355-65. ©2016 AACR.
Assuntos
Cálcio/toxicidade , Colecalciferol/farmacologia , Dieta/efeitos adversos , Neoplasias da Próstata/patologia , Receptores de Detecção de Cálcio/metabolismo , Canais de Cátion TRPC/metabolismo , Animais , Linhagem Celular Tumoral , Suplementos Nutricionais , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Canal de Cátion TRPC6 , Regulação para CimaRESUMO
CONTEXT: In a cohort of 95 women with multiple breast fibroadenomas (MFAs), we recently identified patients harboring germline heterozygous variants of the prolactin receptor (PRLR) exhibiting constitutive activity (PRLRI146L and PRLRI176V). OBJECTIVE: This study sought to better delineate the potential role of PRLR gain-of-function variants in benign and malignant mammary tumorigenesis. DESIGN: This was an observational study and transgenic mouse model analysis. SETTING: The study took place at the Department of Endocrinology, Reproductive Disorders and Rare Gynecologic Diseases, Pitié Salpêtrière, Paris, and Inserm Unit 1151, Paris. PATIENTS OR OTHER PARTICIPANTS: We generated a second MFA cohort (n = 71) as well as a group of control subjects (n = 496) and a cohort of women with breast cancer (n = 119). We also generated two transgenic mouse models carrying the coding sequences of human PRLRI146L or PRLRWT. INTERVENTION: We aimed to determine the prevalence of PRLR variants in these three populations and to uncover any association of the latter with specific tumor pattern, especially in patients with breast cancer. RESULTS: This study did not highlight a higher prevalence of PRLR variants in the MFA group and in the breast cancer group compared with control subjects. Transgenic mice expressing PRLRI146L exhibited very mild histological mammary phenotype but tumors were never observed. CONCLUSION: PRLRI146L and PRLRI176V variants are not associated with breast cancer or MFA risk. However, one cannot exclude that low but sustained PRLR signaling may facilitate or contribute to pathological development driven by oncogenic pathways. Long-term patient follow-up should help to address this issue.
Assuntos
Neoplasias da Mama/genética , Fibroadenoma/genética , Receptores da Prolactina/genética , Adolescente , Adulto , Animais , Estudos de Coortes , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Adulto JovemRESUMO
Epidemiological studies that have investigated whether dairy (mainly milk) diets are associated with prostate cancer risk have led to controversial conclusions. In addition, no existing study clearly evaluated the effects of dairy/milk diets on prostate tumor progression, which is clinically highly relevant in view of the millions of men presenting with prostate pathologies worldwide, including benign prostate hyperplasia (BPH) or high-grade prostatic intraepithelial neoplasia (HGPIN). We report here a unique interventional animal study to address this issue. We used two mouse models of fully penetrant genetically-induced prostate tumorigenesis that were investigated at the stages of benign hyperplasia (probasin-Prl mice, Pb-Prl) or pre-cancerous PIN lesions (KIMAP mice). Mice were fed high milk diets (skim or whole) for 15 to 27 weeks of time depending on the kinetics of prostate tumor development in each model. Prostate tumor progression was assessed by tissue histopathology examination, epithelial proliferation, stromal inflammation and fibrosis, tumor invasiveness potency and expression of various tumor markers relevant for each model (c-Fes, Gprc6a, activated Stat5 and p63). Our results show that high milk consumption (either skim or whole) did not promote progression of existing prostate tumors when assessed at early stages of tumorigenesis (hyperplasia and neoplasia). For some parameters, and depending on milk type, milk regimen could even exhibit slight protective effects towards prostate tumor progression by decreasing the expression of tumor-related markers like Ki-67 and Gprc6a. In conclusion, our study suggests that regular milk consumption should not be considered detrimental for patients presenting with early-stage prostate tumors.
Assuntos
Progressão da Doença , Leite/metabolismo , Neoplasias da Próstata/patologia , Animais , Biomarcadores Tumorais/metabolismo , Proliferação de Células , Dieta , Modelos Animais de Doenças , Fibrose , Hipertrofia , Inflamação/patologia , Masculino , Camundongos , Invasividade Neoplásica , Tamanho do Órgão , Próstata/patologia , Aumento de PesoRESUMO
Evidence for a role for calcium channel proteins in cell proliferation is numerous suggesting that calcium influx is essential in this physiological process. Several studies in the past thirty years have demonstrated that calcium channel expression levels are determinant in cell proliferation. Voltage-gated, store-operated, second messengers and receptor-operated calcium channels have been associated to cell proliferation. However, the relationship between calcium influx and cell proliferation can be uncoupled in transformed and cancer cells, resulting in an external calcium-independent proliferation. Thus, protein expression could be more important than channel function to trigger cell proliferation suggesting that additional channel functions may be responsible to reconcile calcium channel expression and cell proliferation. When needed, external calcium concentration is obviously important for calcium channel function but it also regulates calcium sensing receptor (CaSR) activity. CaSR can up- or down-regulate cell proliferation depending on physiological conditions. CaSR sensitivity to external calcium is within the 0.5 to 5 mM range and therefore, the role of these receptors in cell proliferation must be taken into account. We therefore suggest here that cell proliferation rates could depend on the relative balance between calcium influx and CaSR activation.
Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Animais , Ciclo Celular , Proliferação de Células , Humanos , Receptores de Detecção de Cálcio/metabolismoRESUMO
Caseins, the main milk proteins, interact with colloidal calcium phosphate to form the casein micelle. The mesostructure of this supramolecular assembly markedly influences its nutritional and technological functionalities. However, its detailed molecular organization and the cellular mechanisms involved in its biogenesis have been only partially established. There is a growing body of evidence to support the concept that α(s1)-casein takes center stage in casein micelle building and transport in the secretory pathway of mammary epithelial cells. Here we have investigated the membrane-associated form of α(s1)-casein in rat mammary epithelial cells. Using metabolic labelling we show that α(s1)-casein becomes associated with membranes at the level of the endoplasmic reticulum, with no subsequent increase at the level of the Golgi apparatus. From morphological and biochemical data, it appears that caseins are in a tight relationship with membranes throughout the secretory pathway. On the other hand, we have observed that the membrane-associated form of α(s1)-casein co-purified with detergent-resistant membranes. It was poorly solubilised by Tween 20, partially insoluble in Lubrol WX, and substantially insoluble in Triton X-100. Finally, we found that cholesterol depletion results in the release of the membrane-associated form of α(s1)-casein. These experiments reveal that the insolubility of α(s1)-casein reflects its partial association with a cholesterol-rich detergent-resistant microdomain. We propose that the membrane-associated form of α(s1)-casein interacts with the lipid microdomain, or lipid raft, that forms within the membranes of the endoplasmic reticulum, for efficient forward transport and sorting in the secretory pathway of mammary epithelial cells.
Assuntos
Caseínas/química , Colesterol/química , Mamíferos/metabolismo , Microdomínios da Membrana/química , Animais , Transporte Biológico , Caseínas/metabolismo , Detergentes/farmacologia , Células Epiteliais/metabolismo , Células Epiteliais/ultraestrutura , Evolução Molecular , Feminino , Lactação , Microdomínios da Membrana/efeitos dos fármacos , Micelas , Ratos Wistar , Especificidade da EspécieRESUMO
Human scalp skin and hair follicles (HFs) are extra-pituitary sources of prolactin (PRL). However, the intracutaneous regulation of PRL remains poorly understood. Therefore we investigated whether well-recognized regulators of pituitary PRL expression, which also impact on human skin physiology and pathology, regulate expression of PRL and its receptor (PRLR) in situ. This was studied in serum-free organ cultures of microdissected human scalp HFs and skin, i.e. excluding pituitary, neural and vascular inputs. Prolactin expression was confirmed at the gene and protein level in human truncal skin, where its expression significantly increased (pâ=â0.049) during organ culture. There was, however, no evidence of PRL secretion into the culture medium as measured by ELISA. PRL immunoreactivity (IR) in female human epidermis was decreased by substance P (pâ=â0.009), while neither the classical pituitary PRL inhibitor, dopamine, nor corticotropin-releasing hormone significantly modulated PRL IR in HFs or skin respectively. Interferon (IFN) γ increased PRL IR in the epithelium of human HFs (pâ=â0.044) while tumour necrosis factor (TNF) α decreased both PRL and PRLR IR. This study identifies substance P, TNFα and IFNγ as novel modulators of PRL and PRLR expression in human skin, and suggests that intracutaneous PRL expression is not under dopaminergic control. Given the importance of PRL in human hair growth regulation and its possible role in the pathogenesis of several common skin diseases, targeting intracutaneous PRL production via these newly identified regulatory pathways may point towards novel therapeutic options for inflammatory dermatoses.