RESUMO
AIMS/HYPOTHESIS: Recent studies have demonstrated that cannabinoid-1 (CB(1)) receptor blockade ameliorated inflammation, endothelial and/or cardiac dysfunction, and cell death in models of nephropathy, atherosclerosis and cardiomyopathy. However the role of CB(1) receptor signalling in diabetic retinopathy remains unexplored. Using genetic deletion or pharmacological inhibition of the CB(1) receptor with SR141716 (rimonabant) in a rodent model of diabetic retinopathy or in human primary retinal endothelial cells (HREC) exposed to high glucose, we explored the role of CB(1) receptors in the pathogenesis of diabetic retinopathy. METHODS: Diabetes was induced using streptozotocin in C57BL/6J Cb(1) (also known as Cnr1)(+/+) and Cb(1)(-/-) mice aged 8 to 12 weeks. Samples from mice retina or HREC were used to determine: (1) apoptosis; (2) activity of nuclear factor kappa B, intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), poly (ADP-ribose) polymerase and caspase-3; (3) content of 3-nitrotyrosine and reactive oxygen species; and (4) activation of p38/Jun N-terminal kinase/mitogen-activated protein kinase (MAPK). RESULTS: Deletion of CB(1) receptor or treatment of diabetic mice with CB(1) receptor antagonist SR141716 prevented retinal cell death. Treatment of diabetic mice or HREC cells exposed to high glucose with SR141716 attenuated the oxidative and nitrative stress, and reduced levels of nuclear factor κB, ICAM-1 and VCAM-1. In addition, SR141716 attenuated the diabetes- or high glucose-induced pro-apoptotic activation of MAPK and retinal vascular cell death. CONCLUSIONS/INTERPRETATION: Activation of CB(1) receptors may play an important role in the pathogenesis of diabetic retinopathy by facilitating MAPK activation, oxidative stress and inflammatory signalling. Conversely, CB(1) receptor inhibition may be beneficial in the treatment of this devastating complication of diabetes.
Assuntos
Apoptose/fisiologia , Diabetes Mellitus Experimental/fisiopatologia , Retinopatia Diabética/fisiopatologia , Endotélio Vascular/fisiopatologia , Receptor CB1 de Canabinoide/fisiologia , Retina/fisiopatologia , Vasculite Retiniana/fisiopatologia , Animais , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Linhagem Celular , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/complicações , Retinopatia Diabética/etiologia , Retinopatia Diabética/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Glucose/farmacologia , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Receptor CB1 de Canabinoide/deficiência , Receptor CB1 de Canabinoide/genética , Retina/metabolismo , Retina/patologia , Vasculite Retiniana/metabolismo , Transdução de Sinais/fisiologia , Estreptozocina/efeitos adversosRESUMO
AIMS/HYPOTHESIS: Accumulation of pro-nerve growth factor (NGF), the pro form of NGF, has been detected in neurodegenerative diseases. However, the role of proNGF in the diabetic retina and the molecular mechanisms by which proNGF causes retinal neurodegeneration remain unknown. The aim of this study was to elucidate the role of proNGF in neuroglial activation and to examine the neuroprotective effects of epicatechin, a selective inhibitor of tyrosine nitration, in an experimental rat model of diabetes. METHODS: Expression of proNGF and its receptors was examined in retinas from streptozotocin-induced diabetic rats, and in retinal Müller and retinal ganglion cells (RGCs). RGC death was assessed by TUNEL and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays in diabetic retinas and cell culture. Nitrotyrosine was determined using Slot-blot. Activation of the tyrosine kinase A (TrkA) receptor and p38 mitogen-activated protein kinase (p38MAPK) was assessed by western blot. RESULTS: Diabetes-induced peroxynitrite impaired phosphorylation of TrkA-Y490 via tyrosine nitration, activated glial cells and increased expression of proNGF and its receptor, p75 neurotrophin receptor (p75(NTR)), in vivo and in Müller cells. These effects were associated with activation of p38MAPK, cleaved poly-(ADP-ribose) polymerase and RGC death. Treatment of diabetic animals with epicatechin (100 mg kg(-1) day(-1), orally) blocked these effects and restored neuronal survival. Co-cultures of RGCs with conditioned medium of activated Müller cells significantly reduced RGC viability (44%). Silencing expression of p75(NTR) by use of small interfering RNA protected against high glucose- and proNGF-induced apoptosis in RGC cultures. CONCLUSIONS/INTERPRETATION: Diabetes-induced peroxynitrite stimulates p75(NTR) and proNGF expression in Müller cells. It also impairs TrkA receptor phosphorylation and activates the p75(NTR) apoptotic pathway in RGCs, leading to neuronal cell death. These effects were blocked by epicatechin, a safe dietary supplement, suggesting its potential therapeutic use in diabetic patients.
Assuntos
Catequina/farmacologia , Degeneração Neural/metabolismo , Degeneração Neural/prevenção & controle , Fator de Crescimento Neural/metabolismo , Receptor de Fator de Crescimento Neural/metabolismo , Retina/metabolismo , Animais , Glicemia/efeitos dos fármacos , Western Blotting , Peso Corporal/efeitos dos fármacos , Linhagem Celular , Marcação In Situ das Extremidades Cortadas , Masculino , RNA Interferente Pequeno/genética , Ratos , Ratos Sprague-Dawley , Retina/efeitos dos fármacos , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/metabolismo , Tirosina/análogos & derivados , Tirosina/metabolismoRESUMO
AIMS/HYPOTHESIS: Diabetic retinopathy, the leading cause of blindness in working-age Americans, is characterised by reduced neurotrophic support and increased proinflammatory cytokines, resulting in neurotoxicity and vascular permeability. We sought to elucidate how oxidative stress impairs homeostasis of nerve growth factor (NGF) and its precursor, proform of NGF (proNGF), to cause neurovascular dysfunction in the eye of diabetic patients. METHODS: Levels of NGF and proNGF were examined in samples from human patients, from retinal Müller glial cell line culture cells and from streptozotocin-induced diabetic animals treated with and without atorvastatin (10 mg/kg daily, per os) or 5,10,15,20-tetrakis (4-sulfonatophenyl)porphyrinato iron (III) chloride (FeTPPs) (15 mg/kg daily, i.p.) for 4 weeks. Neuronal death and vascular permeability were assessed by TUNEL and extravasation of BSA-fluorescein. RESULTS: Diabetes-induced peroxynitrite formation impaired production and activity of matrix metalloproteinase-7 (MMP-7), which cleaves proNGF extracellularly, leading to accumulation of proNGF and reducing NGF in samples from diabetic retinopathy patients and experimental models. Treatment of diabetic animals with atorvastatin exerted similar protective effects that blocked peroxynitrite using FeTPPs, restoring activity of MMP-7 and hence the balance between proNGF and NGF. These effects were associated with preservation of blood-retinal barrier integrity, preventing neuronal cell death and blocking activation of RhoA and p38 mitogen-activated protein kinase (p38MAPK) in experimental and human samples. CONCLUSIONS/INTERPRETATION: Oxidative stress plays an unrecognised role in causing accumulation of proNGF, which can activate a common pathway, RhoA/p38MAPK, to mediate neurovascular injury. Oral statin therapy shows promise for treatment of diabetic retinopathy.