Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Br J Haematol ; 199(4): 549-559, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36101920

RESUMO

Administration of plasma therapy may contribute to viral control and survival of COVID-19 patients receiving B-cell-depleting agents that impair humoral immunity. However, little is known on the impact of anti-CD20 pre-exposition on the kinetics of SARS-CoV-2-specific antibodies. Here, we evaluated the relationship between anti-spike immunoglobulin G (IgG) kinetics and the clinical status or intra-host viral evolution after plasma therapy in 36 eligible hospitalized COVID-19 patients, pre-exposed or not to B-cell-depleting treatments. The majority of anti-CD20 pre-exposed patients (14/17) showed progressive declines of anti-spike IgG titres following plasma therapy, contrasting with the 4/19 patients who had not received B-cell-depleting agents (p = 0.0006). Patients with antibody decay also depicted prolonged clinical symptoms according to the World Health Organization (WHO) severity classification (p = 0.0267) and SARS-CoV-2 viral loads (p = 0.0032) before complete virus clearance. Moreover, they had higher mutation rates than patients able to mount an endogenous humoral response (p = 0.015), including three patients with one to four spike mutations, potentially associated with immune escape. No relevant differences were observed between patients treated with plasma from convalescent and/or mRNA-vaccinated donors. Our study emphasizes the need for an individualized clinical care and follow-up in the management of COVID-19 patients with B-cell lymphopenia.


Assuntos
COVID-19 , Humanos , COVID-19/terapia , SARS-CoV-2 , Formação de Anticorpos , Imunização Passiva , Anticorpos Antivirais , Imunoglobulina G
2.
Nucleic Acids Res ; 48(D1): D526-D534, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31665454

RESUMO

ChlamDB is a comparative genomics database containing 277 genomes covering the entire Chlamydiae phylum as well as their closest relatives belonging to the Planctomycetes-Verrucomicrobiae-Chlamydiae (PVC) superphylum. Genomes can be compared, analyzed and retrieved using accessions numbers of the most widely used databases including COG, KEGG ortholog, KEGG pathway, KEGG module, Pfam and InterPro. Gene annotations from multiple databases including UniProt (curated and automated protein annotations), KEGG (annotation of pathways), COG (orthology), TCDB (transporters), STRING (protein-protein interactions) and InterPro (domains and signatures) can be accessed in a comprehensive overview page. Candidate effectors of the Type III secretion system (T3SS) were identified using four in silico methods. The identification of orthologs among all PVC genomes allows users to perform large-scale comparative analyses and to identify orthologs of any protein in all genomes integrated in the database. Phylogenetic relationships of PVC proteins and their closest homologs in RefSeq, comparison of transmembrane domains and Pfam domains, conservation of gene neighborhood and taxonomic profiles can be visualized using dynamically generated graphs, available for download. As a central resource for researchers working on chlamydia, chlamydia-related bacteria, verrucomicrobia and planctomyces, ChlamDB facilitates the access to comprehensive annotations, integrates multiple tools for comparative genomic analyses and is freely available at https://chlamdb.ch/. Database URL: https://chlamdb.ch/.


Assuntos
Chlamydia/genética , Bases de Dados Genéticas , Genoma Bacteriano , Genômica/métodos , Software , Verrucomicrobia/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Redes e Vias Metabólicas , Mapas de Interação de Proteínas
3.
J Clin Microbiol ; 59(10): e0094421, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34319802

RESUMO

Although many laboratories worldwide have developed their sequencing capacities in response to the need for SARS-CoV-2 genome-based surveillance of variants, only a few reported some quality criteria to ensure sequence quality before lineage assignment and submission to public databases. Hence, we aimed here to provide simple quality control criteria for SARS-CoV-2 sequencing to prevent erroneous interpretation of low-quality or contaminated data. We retrospectively investigated 647 SARS-CoV-2 genomes obtained over 10 tiled amplicons sequencing runs. We extracted 26 potentially relevant metrics covering the entire workflow from sample selection to bioinformatics analysis. Based on data distribution, critical values were established for 11 selected metrics to prompt further quality investigations for problematic samples, in particular those with a low viral RNA quantity. Low-frequency variants (<70% of supporting reads) can result from PCR amplification errors, sample cross contaminations, or presence of distinct SARS-CoV2 genomes in the sample sequenced. The number and the prevalence of low-frequency variants can be used as a robust quality criterion to identify possible sequencing errors or contaminations. Overall, we propose 11 metrics with fixed cutoff values as a simple tool to evaluate the quality of SARS-CoV-2 genomes, among which are cycle thresholds, mean depth, proportion of genome covered at least 10×, and the number of low-frequency variants combined with mutation prevalence data.


Assuntos
COVID-19 , SARS-CoV-2 , Genoma Viral , Humanos , RNA Viral , Estudos Retrospectivos
4.
Environ Microbiol ; 19(10): 4022-4034, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28618143

RESUMO

Amoeba-infecting viruses have raised scientists' interest due to their novel particle morphologies, their large genome size and their genomic content challenging previously established dogma. We report here the discovery and the characterization of Cedratvirus lausannensis, a novel member of the Megavirales, with a 0.75-1 µm long amphora-shaped particle closed by two striped plugs. Among numerous host cell types tested, the virus replicates only in Acanthamoeba castellanii leading to host cell lysis within 24 h. C. lausannensis was resistant to ethanol, hydrogen peroxide and heating treatments. Like 30 000-year-old Pithovirus sibericum, C. lausannensis enters by phagocytosis, releases its genetic content by fusion of the internal membrane with the inclusion membrane and replicates in intracytoplasmic viral factories. The genome encodes 643 proteins that confirmed the grouping of C. lausannensis with Cedratvirus A11 as phylogenetically distant members of the family Pithoviridae. The 575,161 bp AT-rich genome is essentially devoid of the numerous repeats harbored by Pithovirus, suggesting that these non-coding repetitions might be due to a selfish element rather than particular characteristics of the Pithoviridae family. The discovery of C. lausannensis confirms the contemporary worldwide distribution of Pithoviridae members and the characterization of its genome paves the way to better understand their evolution.


Assuntos
Vírus de DNA/classificação , Vírus Gigantes/classificação , Acanthamoeba castellanii/virologia , Vírus de DNA/genética , Vírus de DNA/ultraestrutura , Variação Genética , Genoma Viral , Vírus Gigantes/genética , Vírus Gigantes/ultraestrutura , Filogenia
5.
Environ Microbiol ; 19(5): 1899-1913, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28205377

RESUMO

Several Chlamydiales families are associated with epitheliocystis, a common condition of the fish gill epithelium. These families share common ancestors with the Chlamydiaceae and environmental Chlamydiae. Due to the lack of culture systems, little is known about the biology of these chlamydial fish pathogens. We investigated epitheliocystis in cultured Orange-spotted grouper (Epinephelus coioides) from North Queensland, Australia. Basophilic inclusions were present in the gills of 22/31 fish and the presence of the chlamydial pathogen in the cysts was confirmed by in situ hybridization. Giant grouper (Epinephelus lanceolatus) cultured in the same systems were epitheliocystis free. 16S rRNA gene sequencing revealed a novel member of the Candidatus Parilichlamydiaceae: Ca. Similichlamydia epinephelii. Using metagenomic approaches, we obtained an estimated 68% of the chlamydial genome, revealing that this novel chlamydial pathogen shares a number of key pathogenic hallmarks with the Chlamydiaceae, including an intact Type III Secretion system and several chlamydial virulence factors. This provides additional evidence that these pathogenic mechanisms were acquired early in the evolution of this unique bacterial phylum. The identification and genomic characterization of Ca. S. epinephelii provides new opportunities to study the biology of distantly-related chlamydial pathogens while shining a new light on the evolution of pathogenicity of the Chlamydiaceae.


Assuntos
Bass/microbiologia , Infecções por Chlamydia/microbiologia , Chlamydia/classificação , Chlamydia/genética , Doenças dos Peixes/microbiologia , Brânquias/microbiologia , Animais , Austrália , Composição de Bases/genética , Chlamydia/patogenicidade , Infecções por Chlamydia/patologia , DNA Bacteriano/genética , Genoma Bacteriano/genética , Genômica , RNA Ribossômico 16S/genética , Sistemas de Secreção Tipo III/genética , Fatores de Virulência/genética
6.
Clin Infect Dis ; 60(6): 924-7, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25472946

RESUMO

Administration of probiotics to premature newborns has been shown to prevent necrotizing enterocolitis and reduce all-cause mortality. In our hospital, we documented 2 cases of Bifidobacterium longum subspecies infantis bacteremia in newborns receiving probiotics. By comparative genomics, we confirmed that the strains isolated from each patient originated from the probiotics.


Assuntos
Bacteriemia/tratamento farmacológico , Infecções por Bifidobacteriales/microbiologia , Bifidobacterium/isolamento & purificação , Enterocolite Necrosante/prevenção & controle , Doenças do Prematuro/microbiologia , Probióticos/efeitos adversos , Antibacterianos/administração & dosagem , Bifidobacterium/patogenicidade , Enterocolite Necrosante/microbiologia , Feminino , Humanos , Lactente , Recém-Nascido , Recém-Nascido Prematuro/sangue , Recém-Nascido de muito Baixo Peso , Filogenia , Probióticos/uso terapêutico , Análise de Sequência de DNA
7.
Int J Syst Evol Microbiol ; 65(Pt 4): 1381-1393, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25634949

RESUMO

Bacterial classification is a long-standing problem for taxonomists and species definition itself is constantly debated among specialists. The classification of strict intracellular bacteria such as members of the order Chlamydiales mainly relies on DNA- or protein-based phylogenetic reconstructions because these organisms exhibit few phenotypic differences and are difficult to culture. The availability of full genome sequences allows the comparison of the performance of conserved protein sequences to reconstruct Chlamydiales phylogeny. This approach permits the identification of markers that maximize the phylogenetic signal and the robustness of the inferred tree. In this study, a set of 424 core proteins was identified and concatenated to reconstruct a reference species tree. Although individual protein trees present variable topologies, we detected only few cases of incongruence with the reference species tree, which were due to horizontal gene transfers. Detailed analysis of the phylogenetic information of individual protein sequences (i) showed that phylogenies based on single randomly chosen core proteins are not reliable and (ii) led to the identification of twenty taxonomically highly reliable proteins, allowing the reconstruction of a robust tree close to the reference species tree. We recommend using these protein sequences to precisely classify newly discovered isolates at the family, genus and species levels.


Assuntos
Chlamydiales/classificação , Genoma Bacteriano , Filogenia , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Sequência Conservada , DNA Bacteriano/genética , Transferência Genética Horizontal , RNA Ribossômico 16S/genética , RNA Ribossômico 23S/genética , Alinhamento de Sequência , Análise de Sequência de DNA
9.
mSystems ; : e0047324, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940522

RESUMO

The analysis and comparison of genomes rely on different tools for tasks such as annotation, orthology prediction, and phylogenetic inference. Most tools are specialized for a single task, and additional efforts are necessary to integrate and visualize the results. To fill this gap, we developed zDB, an application integrating a Nextflow analysis pipeline and a Python visualization platform built on the Django framework. The application is available on GitHub (https://github.com/metagenlab/zDB) and from the bioconda channel. Starting from annotated Genbank files, zDB identifies orthologs and infers a phylogeny for each orthogroup. A species phylogeny is also constructed from shared single-copy orthologs. The results can be enriched with Pfam protein domain prediction, Cluster of Orthologs Genes and Kyoto Encyclopedia of Genes and Genomes annotations, and Swissprot homologs. The web application allows searching for specific genes or annotations, running Blast queries, and comparing genomic regions and whole genomes. The metabolic capacities of organisms can be compared at either the module or pathway levels. Finally, users can run queries to examine the conservation of specific genes or annotations across a chosen subset of genomes and display the results as a list of genes, Venn diagram, or heatmaps. Those features make zDB useful for both bioinformaticians and researchers more accustomed to laboratory research.IMPORTANCEGenome comparison and analysis rely on many independent tools, leaving to scientists the burden to integrate and visualize their results for interpretation. To alleviate this burden, we have built zDB, a comparative genomics tool that includes both an analysis pipeline and a visualization platform. The analysis pipeline automates gene annotation, orthology prediction, and phylogenetic inference, while the visualization platform allows scientists to easily explore the results in a web browser. Among other features, the interface allows users to visually compare whole genomes and targeted regions, assess the conservation of genes or metabolic pathways, perform Blast searches, or look for specific annotations. Altogether, this tool will be useful for a broad range of applications in comparative studies between two and hundred genomes. Furthermore, it is designed to allow sharing of data sets easily at a local or international scale, thereby supporting exploratory analyses for non-bioinformaticians on the genome of their favorite organisms.

11.
New Microbes New Infect ; 54: 101158, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37416863

RESUMO

The International Committee on Systematics of Prokaryotes (ICSP) discussed and rejected in 2020 a proposal to modify the International Code of Nomenclature of Prokaryotes to allow the use of gene sequences as type for naming prokaryotes. An alternative nomenclatural code, the Code of Nomenclature of Prokaryotes Described from Sequence Data (SeqCode), which considers genome sequences as type material for naming species, was published in 2022. Members of the ICSP subcommittee for the taxonomy of the phylum Chlamydiae (Chlamydiota) consider that the use of gene sequences as type would benefit the taxonomy of microorganisms that are difficult to culture such as the chlamydiae and other strictly intracellular bacteria. We recommend the registration of new names of uncultured prokaryotes in the SeqCode registry.

12.
Sci Transl Med ; 15(680): eabn7979, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36346321

RESUMO

Genome sequences from evolving infectious pathogens allow quantification of case introductions and local transmission dynamics. We sequenced 11,357 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomes from Switzerland in 2020-the sixth largest effort globally. Using a representative subset of these data, we estimated viral introductions to Switzerland and their persistence over the course of 2020. We contrasted these estimates with simple null models representing the absence of certain public health measures. We show that Switzerland's border closures decoupled case introductions from incidence in neighboring countries. Under a simple model, we estimate an 86 to 98% reduction in introductions during Switzerland's strictest border closures. Furthermore, the Swiss 2020 partial lockdown roughly halved the time for sampled introductions to die out. Last, we quantified local transmission dynamics once introductions into Switzerland occurred using a phylodynamic model. We found that transmission slowed 35 to 63% upon outbreak detection in summer 2020 but not in fall. This finding may indicate successful contact tracing over summer before overburdening in fall. The study highlights the added value of genome sequencing data for understanding transmission dynamics.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/genética , Saúde Pública , Suíça/epidemiologia , Controle de Doenças Transmissíveis , Genoma Viral/genética , Filogenia
13.
Viruses ; 15(1)2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36680054

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently causing an unprecedented pandemic. Although vaccines and antivirals are limiting the spread, SARS-CoV-2 is still under selective pressure in human and animal populations, as demonstrated by the emergence of variants of concern. To better understand the driving forces leading to new subtypes of SARS-CoV-2, we infected an ex vivo cell model of the human upper respiratory tract with Alpha and Omicron BA.1 variants for one month. Although viral RNA was detected during the entire course of the infection, infectious virus production decreased over time. Sequencing analysis did not show any adaptation in the spike protein, suggesting a key role for the adaptive immune response or adaptation to other anatomical sites for the evolution of SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , Antivirais , Nariz , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Traqueia , Evolução Molecular
14.
Microbiol Spectr ; 10(3): e0200921, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35579440

RESUMO

The rapid emergence of antibiotic-resistant bacteria poses a serious threat to public health worldwide. Antimicrobial peptides (AMPs) are promising antibiotic alternatives; however, little is known about bacterial mechanisms of AMP resistance and the interplay between AMP resistance and the bacterial response to other antimicrobials. In this study, we identified Escherichia coli mutants resistant to the TAT-RasGAP317-326 antimicrobial peptide and found that resistant bacteria show collateral sensitivity to other AMPs and antibacterial agents. We determined that resistance to TAT-RasGAP317-326 peptide arises through mutations in the histidine kinase EnvZ, a member of the EnvZ/OmpR two-component system responsible for osmoregulation in E. coli. In particular, we found that TAT-RasGAP317-326 binding and entry is compromised in E. coli peptide-resistant mutants. We showed that peptide resistance is associated with transcriptional regulation of a number of pathways and EnvZ-mediated resistance is dependent on the OmpR response regulator but is independent of the OmpC and OmpF outer membrane porins. Our findings provide insight into the bacterial mechanisms of TAT-RasGAP317-326 resistance and demonstrate that resistance to this AMP is associated with collateral sensitivity to other antibacterial agents. IMPORTANCE Antimicrobial peptides (AMP) are promising alternatives to classical antibiotics in the fight against antibiotic resistance. Resistance toward antimicrobial peptides can occur, but little is known about the mechanisms driving this phenomenon. Moreover, there is limited knowledge on how AMP resistance relates to the bacterial response to other antimicrobial agents. Here, we address these questions in the context of the antimicrobial peptide TAT-RasGAP317-326. We show that resistant Escherichia coli strains can be selected and do not show resistance to other antimicrobial agents. Resistance is caused by a mutation in a regulatory pathway, which lowers binding and entry of the peptide in E. coli. Our results highlight a mechanism of resistance that is specific to TAT-RasGAP317-326. Further research is required to characterize these mechanisms and to evaluate the potential of antimicrobial combinations to curb the development of antimicrobial resistance.


Assuntos
Proteínas de Bactérias , Proteínas de Escherichia coli , Escherichia coli , Transativadores , Antibacterianos/farmacologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Sensibilidade Colateral a Medicamentos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas Ativadoras de GTPase , Complexos Multienzimáticos/metabolismo , Fragmentos de Peptídeos , Porinas/genética , Porinas/metabolismo , Proteínas Ativadoras de ras GTPase/metabolismo , Transativadores/metabolismo
15.
bioRxiv ; 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35291297

RESUMO

SARS-CoV-2 is currently causing an unprecedented pandemic. While vaccines are massively deployed, we still lack effective large-scale antiviral therapies. In the quest for antivirals targeting conserved structures, we focused on molecules able to bind viral RNA secondary structures. Aminoglycosides are a class of antibiotics known to interact with the ribosomal RNA of both prokaryotes and eukaryotes and have previously been shown to exert antiviral activities by interacting with viral RNA. Here we show that the aminoglycoside geneticin is endowed with antiviral activity against all tested variants of SARS-CoV-2, in different cell lines and in a respiratory tissue model at non-toxic concentrations. The mechanism of action is an early inhibition of RNA replication and protein expression related to a decrease in the efficiency of the -1 programmed ribosomal frameshift (PRF) signal of SARS-CoV-2. Using in silico modelling, we have identified a potential binding site of geneticin in the pseudoknot of frameshift RNA motif. Moreover, we have selected, through virtual screening, additional RNA binding compounds, interacting with the same site with increased potency.

16.
Antiviral Res ; 208: 105452, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36341734

RESUMO

SARS-CoV-2 is currently causing an unprecedented pandemic. While vaccines are massively deployed, we still lack effective large-scale antiviral therapies. In the quest for antivirals targeting conserved structures, we focused on molecules able to bind viral RNA secondary structures. Aminoglycosides are a class of antibiotics known to interact with the ribosomal RNA of both prokaryotes and eukaryotes and have previously been shown to exert antiviral activities by interacting with viral RNA. Here we show that the aminoglycoside geneticin is endowed with antiviral activity against all tested variants of SARS-CoV-2, in different cell lines and in a respiratory tissue model at non-toxic concentrations. The mechanism of action is an early inhibition of RNA replication and protein expression related to a decrease in the efficiency of the -1 programmed ribosomal frameshift (PRF) signal of SARS-CoV-2. Using in silico modeling, we have identified a potential binding site of geneticin in the pseudoknot of frameshift RNA motif. Moreover, we have selected, through virtual screening, additional RNA binding compounds, interacting with the same site with increased potency.


Assuntos
Tratamento Farmacológico da COVID-19 , Mudança da Fase de Leitura do Gene Ribossômico , Humanos , SARS-CoV-2/genética , Antivirais/farmacologia , Antivirais/química , RNA Viral/metabolismo
17.
Front Public Health ; 10: 1016169, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36568782

RESUMO

Background: The need for effective public health surveillance systems to track virus spread for targeted interventions was highlighted during the COVID-19 pandemic. It spurred an interest in the use of spatiotemporal clustering and genomic analyses to identify high-risk areas and track the spread of the SARS-CoV-2 virus. However, these two approaches are rarely combined in surveillance systems to complement each one's limitations; spatiotemporal clustering approaches usually consider only one source of virus transmission (i.e., the residential setting) to detect case clusters, while genomic studies require significant resources and processing time that can delay decision-making. Here, we clarify the differences and possible synergies of these two approaches in the context of infectious disease surveillance systems by investigating to what extent geographically-defined clusters are confirmed as transmission clusters based on genome sequences, and how genomic-based analyses can improve the epidemiological investigations associated with spatiotemporal cluster detection. Methods: For this purpose, we sequenced the SARS-CoV-2 genomes of 172 cases that were part of a collection of spatiotemporal clusters found in a Swiss state (Vaud) during the first epidemic wave. We subsequently examined intra-cluster genetic similarities and spatiotemporal distributions across virus genotypes. Results: Our results suggest that the congruence between the two approaches might depend on geographic features of the area (rural/urban) and epidemic context (e.g., lockdown). We also identified two potential superspreading events that started from cases in the main urban area of the state, leading to smaller spreading events in neighboring regions, as well as a large spreading in a geographically-isolated area. These superspreading events were characterized by specific mutations assumed to originate from Mulhouse and Milan, respectively. Our analyses propose synergistic benefits of using two complementary approaches in public health surveillance, saving resources and improving surveillance efficiency.


Assuntos
COVID-19 , Humanos , SARS-CoV-2/genética , Pandemias , Controle de Doenças Transmissíveis , Genômica , Análise por Conglomerados
18.
Microorganisms ; 9(2)2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33578772

RESUMO

The Mycobacterium kansasii species comprises six subtypes that were recently classified into six closely related species; Mycobacterium kansasii (formerly M. kansasii subtype 1), Mycobacterium persicum (subtype 2), Mycobacterium pseudokansasii (subtype 3), Mycobacterium ostraviense (subtype 4), Mycobacterium innocens (subtype 5) and Mycobacterium attenuatum (subtype 6). Together with Mycobacterium gastri, they form the M. kansasii complex. M. kansasii is the most frequent and most pathogenic species of the complex. M. persicum is classically associated with diseases in immunosuppressed patients, and the other species are mostly colonizers, and are only very rarely reported in ill patients. Comparative genomics was used to assess the genetic determinants leading to the pathogenicity of members of the M. kansasii complex. The genomes of 51 isolates collected from patients with and without disease were sequenced and compared with 24 publicly available genomes. The pathogenicity of each isolate was determined based on the clinical records or public metadata. A comparative genomic analysis showed that all M. persicum, M. ostraviense, M innocens and M. gastri isolates lacked the ESX-1-associated EspACD locus that is thought to play a crucial role in the pathogenicity of M. tuberculosis and other non-tuberculous mycobacteria. Furthermore, M. kansasii was the only species exhibiting a 25-Kb-large genomic island encoding for 17 type-VII secretion system-associated proteins. Finally, a genome-wide association analysis revealed that two consecutive genes encoding a hemerythrin-like protein and a nitroreductase-like protein were significantly associated with pathogenicity. These two genes may be involved in the resistance to reactive oxygen and nitrogen species, a required mechanism for the intracellular survival of bacteria. Three non-pathogenic M. kansasii lacked these genes likely due to two distinct distributive conjugal transfers (DCTs) between M. attenuatum and M. kansasii, and one DCT between M. persicum and M. kansasii. To our knowledge, this is the first study linking DCT to reduced pathogenicity.

19.
iScience ; 24(8): 102923, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34430812

RESUMO

Antibiotic resistance is an increasing threat for public health, underscoring the need for new antibacterial agents. Antimicrobial peptides (AMPs) represent an alternative to classical antibiotics. TAT-RasGAP317-326 is a recently described AMP effective against a broad range of bacteria, but little is known about the conditions that may influence its activity. Using RNA-sequencing and screening of mutant libraries, we show that Escherichia coli and Pseudomonas aeruginosa respond to TAT-RasGAP317-326 by regulating metabolic and stress response pathways, possibly implicating two-component systems. Our results also indicate that bacterial surface properties, in particular integrity of the lipopolysaccharide layer, influence peptide binding and entry. Finally, we found differences between bacterial species with respect to their rate of resistance emergence against this peptide. Our findings provide the basis for future investigation on the mode of action of TAT-RasGAP317-326, which may help developing antimicrobial treatments based on this peptide.

20.
Commun Biol ; 4(1): 296, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33674787

RESUMO

The order Chlamydiales includes obligate intracellular pathogens capable of infecting mammals, fishes and amoeba. Unlike other intracellular bacteria for which intracellular adaptation led to the loss of glycogen metabolism pathway, all chlamydial families maintained the nucleotide-sugar dependent glycogen metabolism pathway i.e. the GlgC-pathway with the notable exception of both Criblamydiaceae and Waddliaceae families. Through detailed genome analysis and biochemical investigations, we have shown that genome rearrangement events have resulted in a defective GlgC-pathway and more importantly we have evidenced a distinct trehalose-dependent GlgE-pathway in both Criblamydiaceae and Waddliaceae families. Altogether, this study strongly indicates that the glycogen metabolism is retained in all Chlamydiales without exception, highlighting the pivotal function of storage polysaccharides, which has been underestimated to date. We propose that glycogen degradation is a mandatory process for fueling essential metabolic pathways that ensure the survival and virulence of extracellular forms i.e. elementary bodies of Chlamydiales.


Assuntos
Chlamydiales/metabolismo , Glicogênio/metabolismo , Glicogenólise , Polissacarídeos Bacterianos/metabolismo , Chlamydiales/genética , Chlamydiales/patogenicidade , Evolução Molecular , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Cinética , Filogenia , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA