Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(19)2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34640750

RESUMO

Brain-computer interface (BCI) remains an emerging tool that seeks to improve the patient interaction with the therapeutic mechanisms and to generate neuroplasticity progressively through neuromotor abilities. Motor imagery (MI) analysis is the most used paradigm based on the motor cortex's electrical activity to detect movement intention. It has been shown that motor imagery mental practice with movement-associated stimuli may offer an effective strategy to facilitate motor recovery in brain injury patients. In this sense, this study aims to present the BCI associated with visual and haptic stimuli to facilitate MI generation and control the T-FLEX ankle exoskeleton. To achieve this, five post-stroke patients (55-63 years) were subjected to three different strategies using T-FLEX: stationary therapy (ST) without motor imagination, motor imagination with visual stimulation (MIV), and motor imagination with visual-haptic inducement (MIVH). The quantitative characterization of both BCI stimuli strategies was made through the motor imagery accuracy rate, the electroencephalographic (EEG) analysis during the MI active periods, the statistical analysis, and a subjective patient's perception. The preliminary results demonstrated the viability of the BCI-controlled ankle exoskeleton system with the beta rebound, in terms of patient's performance during MI active periods and satisfaction outcomes. Accuracy differences employing haptic stimulus were detected with an average of 68% compared with the 50.7% over only visual stimulus. However, the power spectral density (PSD) did not present changes in prominent activation of the MI band but presented significant variations in terms of laterality. In this way, visual and haptic stimuli improved the subject's MI accuracy but did not generate differential brain activity over the affected hemisphere. Hence, long-term sessions with a more extensive sample and a more robust algorithm should be carried out to evaluate the impact of the proposed system on neuronal and motor evolution after stroke.


Assuntos
Interfaces Cérebro-Computador , Exoesqueleto Energizado , Acidente Vascular Cerebral , Tornozelo , Humanos , Sobreviventes
2.
IEEE Int Conf Rehabil Robot ; 2023: 1-6, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37941237

RESUMO

Acquired Brain Injury (ABI) causes permanent disabilities, such as foot drop. This condition affects the gait pattern, increasing the metabolic cost and risk of falling. Robotics with serious games has shown promising results in the gait rehabilitation context. This paper aims to analyze the effects of using the T-FLEX exoskeleton with (1) Automated Therapy (AT) and (2) Serious Game Therapy (SGT) in two ABI patients. Each participant completed six assisted sessions for each strategy. Results showed that AT increases the user-robot interaction torque by 10% for the first patient and 70% for the second patient, and SGT decreases by 5% for both patients. This way, SGT required the patient to generate torque to execute the ankle movement, while AT did the opposite, resulting in greater device assistance. In the functional assessment, SGT induced variations greater than 50% for the paretic ankle and knee's range of motion (ROM), indicating a potential for motor recovery. Thus, SGT led to improved ankle control and increased gait speed compared to AT. These findings suggest that SGT may be an effective rehabilitation strategy for ABI-related foot drop patients.


Assuntos
Exoesqueleto Energizado , Neuropatias Fibulares , Robótica , Humanos , Tornozelo , Articulação do Tornozelo , Marcha
3.
IEEE Int Conf Rehabil Robot ; 2022: 1-6, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36176091

RESUMO

Neuromuscular disorders, such as foot drop, severely affect the locomotor function and walking independence after a brain injury event. Mirror-based robotic therapy (MRT) has been a promising rehabilitation strategy favouring upper limb muscle strength and motor control in the last years. However, there are still no studies validating this technique in lower limb experimental protocols. This paper presents an innovative visual and motor feedback strategy based on serious games and MRT modalities. Thus, a preliminary system validation with a healthy participant is performed. Moreover, the strategy's potential effects were investigated in a neurologic patient's short rehabilitation program. After six sessions, the results of the method favoured active ankle plantarflexion range of motion and muscle activation. Although the patient had a positive adaptation at the end of the game, it is necessary to improve the proposed strategy to enhance the robotic experience in the long term.


Assuntos
Procedimentos Cirúrgicos Robóticos , Robótica , Reabilitação do Acidente Vascular Cerebral , Tornozelo , Articulação do Tornozelo , Humanos , Extremidade Inferior , Robótica/métodos , Reabilitação do Acidente Vascular Cerebral/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA