Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 43(4): 571-583, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36460464

RESUMO

Repeated seizures result in a persistent maladaptation of endocannabinoid (eCB) signaling, mediated part by anandamide signaling deficiency in the basolateral amygdala (BLA) that manifests as aberrant synaptic function and altered emotional behavior. Here, we determined the effect of repeated seizures (kindling) on 2-arachidonoylglycerol (2-AG) signaling on GABA transmission by directly measuring tonic and phasic eCB-mediated retrograde signaling in an in vitro BLA slice preparation from male rats. We report that both activity-dependent and muscarinic acetylcholine receptor (mAChR)-mediated depression of GABA synaptic transmission was reduced following repeated seizure activity. These effects were recapitulated in sham rats by preincubating slices with the 2-AG synthesizing enzyme inhibitor DO34. Conversely, preincubating slices with the 2-AG degrading enzyme inhibitor KML29 rescued activity-dependent 2-AG signaling, but not mAChR-mediated synaptic depression, over GABA transmission in kindled rats. These effects were not attributable to a change in cannabinoid type 1 (CB1) receptor sensitivity or altered 2-AG tonic signaling since the application of the highly selective CB1 receptor agonist CP55,940 provoked a similar reduction in GABA synaptic activity in both sham and kindled rats, while no effect of either DO34 or of the CB1 inverse agonist AM251 was observed on frequency and amplitude of spontaneous IPSCs in either sham or kindled rats. Collectively, these data provide evidence that repeated amygdala seizures persistently alter phasic 2-AG-mediated retrograde signaling at BLA GABAergic synapses, probably by impairing stimulus-dependent 2-AG synthesis/release, which contributes to the enduring aberrant synaptic plasticity associated with seizure activity.SIGNIFICANCE STATEMENT The plastic reorganization of endocannabinoid (eCB) signaling after seizures and during epileptogenesis may contribute to the negative neurobiological consequences associated with seizure activity. Therefore, a deeper understanding of the molecular basis underlying the pathologic long-term eCB signaling remodeling following seizure activity will be crucial to the development of novel therapies for epilepsy that not only target seizure activity, but, most importantly, the epileptogenesis and the comorbid conditions associated with epilepsy.


Assuntos
Endocanabinoides , Epilepsia , Ratos , Masculino , Animais , Endocanabinoides/farmacologia , Agonismo Inverso de Drogas , Agonistas de Receptores de Canabinoides/farmacologia , Receptores de Canabinoides , Inibidores Enzimáticos/farmacologia , Convulsões , Ácido gama-Aminobutírico , Receptor CB1 de Canabinoide
2.
Artigo em Inglês | MEDLINE | ID: mdl-38597725

RESUMO

Extreme heat caused by climate change is increasing transmission of infectious diseases resulting in a sharp rise in heat-related illness and mortality. Understanding mechanistic link between heat, inflammation and disease is thus important for public health. Thermal hyperpnea, and consequent respiratory alkalosis is crucial in febrile seizures and convulsions induced by heat stress in humans. Here we address what causes thermal hyperpnea in neonates and how is it affected by inflammation. TRPV1, a heat-activated channel is sensitized by inflammation and modulates breathing, and thus may play a key role. To investigate whether inflammatory sensitization of TRPV1 modifies neonatal ventilatory responses to heat stress, leading to respiratory alkalosis and an increased susceptibility to hyperthermic seizures we treated neonatal rats with bacterial lipopolysaccharide, and breathing, arterial pH, in-vitro vagus nerve activity, and seizure susceptibility were assessed during heat stress in the presence or absence of a TRPV1 antagonist (AMG-9810) or shRNA-mediated TRPV1 suppression. Lipopolysaccharide-induced inflammatory preconditioning lowered the threshold temperature and latency of hyperthermic seizures. This was accompanied by increased tidal volume, minute ventilation, expired CO2, and arterial pH (alkalosis). Lipopolysaccharide exposure also elevated vagal spiking and intracellular calcium levels in response to hyperthermia. TRPV1 inhibition with AMG-9810 or shRNA reduced the lipopolysaccharide-induced susceptibility to hyperthermic seizures and altered the breathing pattern to fast shallow breaths (tachypnea), making each breath less efficient and restoring arterial pH. These results indicate that inflammation exacerbates thermal hyperpnea-induced respiratory alkalosis associated with increased susceptibility to hyperthermic seizures, primarily mediated by TRPV1 localized to vagus neurons. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/).

3.
Proc Natl Acad Sci U S A ; 117(1): 650-655, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31843894

RESUMO

Even a brief exposure to severe stress strengthens synaptic connectivity days later in the amygdala, a brain area implicated in the affective symptoms of stress-related psychiatric disorders. However, little is known about the synaptic signaling mechanisms during stress that eventually culminate in its delayed impact on the amygdala. Hence, we investigated early stress-induced changes in amygdalar synaptic signaling in order to prevent its delayed effects. Whole-cell recordings in basolateral amygdala (BLA) slices from rats revealed higher frequency of miniature excitatory postsynaptic currents (mEPSCs) immediately after 2-h immobilization stress. This was replicated by inhibition of cannabinoid receptors (CB1R), suggesting a role for endocannabinoid (eCB) signaling. Stress also reduced N-arachidonoylethanolamine (AEA), an endogenous ligand of CB1R. Since stress-induced activation of fatty acid amide hydrolase (FAAH) reduces AEA, we confirmed that oral administration of an FAAH inhibitor during stress prevents the increase in synaptic excitation in the BLA soon after stress. Although stress also caused an immediate reduction in synaptic inhibition, this was not prevented by FAAH inhibition. Strikingly, FAAH inhibition during the traumatic stressor was also effective 10 d later on the delayed manifestation of synaptic strengthening in BLA neurons, preventing both enhanced mEPSC frequency and increased dendritic spine-density. Thus, oral administration of an FAAH inhibitor during a brief stress prevents the early synaptic changes that eventually build up to hyperexcitability in the amygdala. This framework is of therapeutic relevance because of growing interest in targeting eCB signaling to prevent the gradual development of emotional symptoms and underlying amygdalar dysfunction triggered by traumatic stress.


Assuntos
Complexo Nuclear Basolateral da Amígdala/fisiologia , Emoções/efeitos dos fármacos , Endocanabinoides/metabolismo , Transdução de Sinais/fisiologia , Estresse Psicológico/fisiopatologia , Administração Oral , Amidoidrolases/antagonistas & inibidores , Amidoidrolases/metabolismo , Animais , Ácidos Araquidônicos , Antagonistas de Receptores de Canabinoides/administração & dosagem , Modelos Animais de Doenças , Emoções/fisiologia , Inibidores Enzimáticos/administração & dosagem , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Humanos , Masculino , Alcamidas Poli-Insaturadas , Ratos , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/psicologia
4.
J Neurosci ; 41(20): 4367-4377, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-33827934

RESUMO

Early-life inflammatory stress increases seizure susceptibility later in life. However, possible sex- and age-specific differences and the associated mechanisms are largely unknown. C57BL/6 mice were bred in house, and female and male pups were injected with lipopolysaccharide (LPS; 100 µg/kg, i.p.) or vehicle control (saline solution) at postnatal day 14 (P14). Seizure threshold was assessed in response to pentylenetetrazol (1% solution, i.v.) in adolescence (∼P40) and adulthood (∼P60). We found that adult, but not adolescent, mice treated with LPS displayed ∼34% lower seizure threshold compared with controls. Females and males showed similar increased seizure susceptibility, suggesting that altered brain excitability was age dependent, but not sex dependent. Whole-cell recordings revealed no differences in excitatory synaptic activity onto CA1 pyramidal neurons from control or neonatally inflamed adolescent mice of either sex. However, adult mice of both sexes previously exposed to LPS displayed spontaneous EPSC frequency approximately twice that of controls, but amplitude was unchanged. Although these changes were not associated with alterations in dendritic spines or in the NMDA/AMPA receptor ratio, they were linked to an increased glutamate release probability from Schaffer collateral, but not temporoammonic pathway. This glutamate increase was associated with reduced activity of presynaptic GABAB receptors and was independent of the endocannabinoid-mediated suppression of excitation. Our new findings demonstrate that early-life inflammation leads to long-term increased hippocampal excitability in adult female and male mice associated with changes in glutamatergic synaptic transmission. These alterations may contribute to enhanced vulnerability of the brain to subsequent pathologic challenges such as epileptic seizures.SIGNIFICANCE STATEMENT Adult physiology has been shown to be affected by early-life inflammation. Our data reveal that early-life inflammation increases excitatory synaptic transmission onto hippocampal CA1 pyramidal neurons in an age-dependent manner through disrupted presynaptic GABAB receptor activity on Schaffer collaterals. This hyperexcitability was seen only in adult, and not in adolescent, animals of either sex. The data suggest a maturation process, independent of sex, in the priming action of early-life inflammation and highlight the importance of studying mature brains to reveal cellular changes associated with early-life interventions.


Assuntos
Inflamação/fisiopatologia , Células Piramidais/fisiologia , Convulsões/fisiopatologia , Transmissão Sináptica/fisiologia , Animais , Convulsivantes/toxicidade , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/fisiopatologia , Inflamação/induzido quimicamente , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pentilenotetrazol/toxicidade , Convulsões/induzido quimicamente
5.
J Neuroinflammation ; 19(1): 73, 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379260

RESUMO

BACKGROUND: Behavioral comorbidities, such as anxiety and depression, are a prominent feature of IBD. The signals from the inflamed gut that cause changes in the brain leading to these behavioral comorbidities remain to be fully elucidated. We tested the hypothesis that enhanced leukocyte-cerebral endothelial cell interactions occur in the brain in experimental colitis, mediated by α4ß7 integrin, to initiate neuroimmune activation and anxiety-like behavior. METHODS: Female mice treated with dextran sodium sulfate were studied at the peak of acute colitis. Circulating leukocyte populations were determined using flow cytometry. Leukocyte-cerebral endothelial cell interactions were examined using intravital microscopy in mice treated with anti-integrin antibodies. Brain cytokine and chemokines were assessed using a multiplex assay in animals treated with anti-α4ß7 integrin. Anxiety-like behavior was assessed using an elevated plus maze in animals after treatment with an intracerebroventricular injection of interleukin 1 receptor antagonist. RESULTS: The proportion of classical monocytes expressing α4ß7 integrin was increased in peripheral blood of mice with colitis. An increase in the number of rolling and adherent leukocytes on cerebral endothelial cells was observed, the majority of which were neutrophils. Treatment with anti-α4ß7 integrin significantly reduced the number of rolling leukocytes. After anti-Ly6C treatment to deplete monocytes, the number of rolling and adhering neutrophils was significantly reduced in mice with colitis. Interleukin-1ß and CCL2 levels were elevated in the brain and treatment with anti-α4ß7 significantly reduced them. Enhanced anxiety-like behavior in mice with colitis was reversed by treatment with interleukin 1 receptor antagonist. CONCLUSIONS: In experimental colitis, α4ß7 integrin-expressing monocytes direct the recruitment of neutrophils to the cerebral vasculature, leading to elevated cytokine levels. Increased interleukin-1ß mediates anxiety-like behavior.


Assuntos
Ansiedade , Colite , Monócitos , Neutrófilos , Animais , Ansiedade/etiologia , Encéfalo , Colite/induzido quimicamente , Citocinas , Células Endoteliais , Feminino , Integrina alfa4 , Cadeias beta de Integrinas , Interleucina-1beta , Camundongos
6.
Brain Behav Immun ; 102: 266-278, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35259427

RESUMO

Inflammatory bowel diseases (IBD) are chronic inflammatory conditions of the gastrointestinal tract. IBD are associated with a high prevalence of cognitive, behavioural and emotional comorbidities, including anxiety and depression. The link between IBD and the development of behavioural comorbidities is poorly understood. As the intestinal microbiota profoundly influences host behaviour, we sought to determine whether the altered gut microbiota associated with intestinal inflammation contributes to the development of behavioural abnormalities. Using the dextran sulphate sodium (DSS) model of colitis, we characterized intestinal inflammation, behaviour (elevated plus maze and tail suspension test) and the composition of the microbiota in male mice. Cecal contents from colitic mice were transferred into germ-free (GF) or antibiotic (Abx)-treated mice, and behaviour was characterized in recipient mice. Gene expression was measured using qPCR. DSS colitis was characterized by a significant reduction in body weight and an increase in colonic inflammatory markers. These changes were accompanied by increased anxiety-like behaviour, an altered gut microbiota composition, and increased central Tnf expression. Transfer of the cecal matter from colitic mice induced similar behavioural changes in both GF and Abx-treated recipient mice, with no signs of colonic or neuroinflammation. Upon characterization of the microbiota in donor and recipient mice, specific taxa were found to be associated with behavioural changes, notably members of the Lachnospiraceae family. Behavioural abnormalities associated with intestinal inflammation are transmissible via transfer of cecal matter, suggesting that alterations in the composition of the gut microbiota play a key role in driving behavioural changes in colitis.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Microbiota , Animais , Colite/induzido quimicamente , Sulfato de Dextrana/farmacologia , Modelos Animais de Doenças , Inflamação , Masculino , Camundongos , Camundongos Endogâmicos C57BL
7.
J Neurosci ; 40(31): 6068-6081, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32601243

RESUMO

Epilepsy is often associated with emotional disturbances and the endocannabinoid (eCB) system tunes synaptic transmission in brain regions regulating emotional behavior. Thus, persistent alteration of eCB signaling after repeated seizures may contribute to the development of epilepsy-related emotional disorders. Here we report that repeatedly eliciting seizures (kindling) in the amygdala caused a long-term increase in anxiety and impaired fear memory retention, which was paralleled by an imbalance in GABA/glutamate presynaptic activity and alteration of synaptic plasticity in the basolateral amygdala (BLA), in male rats. Anandamide (AEA) content was downregulated after repeated seizures, and pharmacological enhancement of AEA signaling rescued seizure-induced anxiety by restoring the tonic control of the eCB signaling over glutamatergic transmission. Moreover, AEA signaling augmentation also rescued the seizure-induced alterations of fear memory by restoring the phasic control of eCB signaling over GABAergic activity and plasticity in the BLA. These results indicate that modulation of AEA signaling represents a potential and promising target for the treatment of comorbid emotional dysfunction associated with epilepsy.SIGNIFICANCE STATEMENT Epilepsy is a heterogeneous neurologic disorder commonly associated with comorbid emotional alterations. However, the management of epilepsy is usually restricted to the control of seizures. The endocannabinoid (eCB) system, particularly anandamide (AEA) signaling, controls neuronal excitability and seizure expression and regulates emotional behavior. We found that repeated seizures cause an allostatic maladaptation of AEA signaling in the amygdala that drives emotional alterations. Boosting AEA signaling through inhibition of its degradative enzyme, fatty acid amide hydrolase (FAAH), restored both synaptic and behavioral alterations. FAAH inhibitors dampen seizure activity in animal models and are used in clinical studies to treat the negative consequences associated with stress. Thereby, they are accessible and can be clinically evaluated to treat both seizures and comorbid conditions associated with epilepsy.


Assuntos
Sintomas Afetivos/fisiopatologia , Tonsila do Cerebelo/fisiopatologia , Ácidos Araquidônicos , Endocanabinoides , Epilepsia/fisiopatologia , Alcamidas Poli-Insaturadas , Transdução de Sinais , Sinapses , Sintomas Afetivos/etiologia , Sintomas Afetivos/psicologia , Amidoidrolases/fisiologia , Animais , Ansiedade/psicologia , Epilepsia/complicações , Epilepsia/psicologia , Medo/psicologia , Ácido Glutâmico/fisiologia , Excitação Neurológica , Masculino , Ratos , Ratos Long-Evans , Ácido gama-Aminobutírico/fisiologia
8.
Brain Behav Immun ; 98: 317-329, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34461234

RESUMO

The intestinal microbiota plays an important role in regulating brain functions and behaviour. Microbiota-dependent changes in host physiology have been suggested to be key contributors to psychiatric conditions. However, specific host pathways modulated by the microbiota involved in behavioural control are lacking. Here, we assessed the role of the aryl hydrocarbon receptor (Ahr) in modulating microbiota-related alterations in behaviour in male and female mice after antibiotic (Abx) treatment. Mice of both sexes were treated with Abx to induce bacterial depletion. Mice were then tested in a battery of behavioural tests, including the elevated plus maze and open field tests (anxiety-like behaviour), 3 chamber test (social preference), and the tail suspension and forced swim tests (despair behaviour). Behavioural measurements in the tail suspension test were also performed after microbiota reconstitution and after administration of an Ahr agonist, ß-naphthoflavone. Gene expression analyses were performed in the brain, liver, and colon by qPCR. Abx-induced bacterial depletion did not alter anxiety-like behaviour, locomotion, or social preference in either sex. A sex-dependent effect was observed in despair behaviour. Male mice had a reduction in despair behaviour after Abx treatment in both the tail suspension and forced swim tests. A similar alteration in despair behaviour was observed in Ahr knockout mice. Despair behaviour was normalized by either microbiota recolonization or Ahr activation in Abx-treated mice. Ahr activation by ß-naphthoflavone was confirmed by increased expression of the Ahr-target genes Cyp1a1, Cyp1b1, and Ahrr. Our results demonstrate a role for Ahr in mediating the behaviours that are regulated by the crosstalk between the intestinal microbiota and the host. Ahr represents a novel potential modulator of behavioural conditions influenced by the intestinal microbiota.


Assuntos
Microbioma Gastrointestinal , Receptores de Hidrocarboneto Arílico , Animais , Antibacterianos/farmacologia , Citocromo P-450 CYP1A1 , Feminino , Masculino , Camundongos , Camundongos Knockout
9.
J Neurosci ; 39(37): 7244-7259, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31308096

RESUMO

Early life, systemic inflammation causes long-lasting changes in behavior. To unmask possible mechanisms associated with this phenomenon, we asked whether the intrinsic membrane properties in hippocampal neurons were altered as a consequence of early life inflammation. C57BL/6 mice were bred in-house and both male and female pups from multiple litters were injected with lipopolysaccharide (LPS; 100 µg/kg, i.p.) or vehicle at postnatal day (P)14, and kept until adolescence (P35-P45) or adulthood (P60-P70), when brain slices were prepared for whole-cell and perforated-patch recordings from CA1 hippocampal pyramidal neurons. In neurons of adult male mice pretreated with LPS, the number of action potentials elicited by depolarizing current pulses was significantly increased compared with control neurons, concomitant with increased input resistance, and a lower action potential threshold. Although these changes were not associated with changes in relevant sodium channel expression or differences in capacitance or dendritic architecture, they were linked to a mechanism involving intracellular chloride overload, revealed through a depolarized GABA reversal potential and increased expression of the chloride transporter, NKCC1. In contrast, no significant changes were observed in neurons of adult female mice pretreated with LPS, nor in adolescent mice of either sex. These data uncover a potential mechanism involving neonatal inflammation-induced plasticity in chloride homeostasis, which may contribute to early life inflammation-induced behavioral alterations.SIGNIFICANCE STATEMENT Early life inflammation results in long-lasting changes in many aspects of adult physiology. In this paper we reveal that a brief exposure to early life peripheral inflammation with LPS increases excitability in hippocampal neurons in a sex- and age-dependent manner through a chloride homeostasis disruption. As this hyperexcitability was only seen in adult males, and not in adult females or adolescent animals of either sex, it raises the possibility of a hormonal interaction with early life inflammation. Furthermore, as neonatal inflammation is a normal feature of early life in most animals, as well as humans, these findings may be very important for the development of animal models of disease that more appropriately resemble the human condition.


Assuntos
Região CA1 Hipocampal/metabolismo , Homeostase/fisiologia , Inflamação/metabolismo , Células Piramidais/metabolismo , Caracteres Sexuais , Membro 2 da Família 12 de Carreador de Soluto/metabolismo , Fatores Etários , Animais , Região CA1 Hipocampal/efeitos dos fármacos , Feminino , Homeostase/efeitos dos fármacos , Inflamação/induzido quimicamente , Lipopolissacarídeos/toxicidade , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Células Piramidais/efeitos dos fármacos , Fatores Sexuais
10.
J Neuroinflammation ; 17(1): 146, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32375817

RESUMO

BACKGROUND: Although historically microglia were thought to be immature in the fetal brain, evidence of purposeful interactions between these immune cells and nearby neural progenitors is becoming established. Here, we examined the influence of embryonic microglia on gliogenesis within the developing tuberal hypothalamus, a region later important for energy balance, reproduction, and thermoregulation. METHODS: We used immunohistochemistry to quantify the location and numbers of glial cells in the embryonic brain (E13.5-E17.5), as well as a pharmacological approach (i.e., PLX5622) to knock down fetal microglia. We also conducted cytokine and chemokine analyses on embryonic brains in the presence or absence of microglia, and a neurosphere assay to test the effects of the altered cytokines on hypothalamic progenitor behaviors. RESULTS: We identified a subpopulation of activated microglia that congregated adjacent to the third ventricle alongside embryonic Olig2+ neural progenitor cells (NPCs) that are destined to give rise to oligodendrocyte and astrocyte populations. In the absence of microglia, we observed an increase in Olig2+ glial progenitor cells that remained at the ventricle by E17.5 and a concomitant decrease of these Olig2+ cells in the mantle zone, indicative of a delay in migration of these precursor cells. A further examination of maturing oligodendrocytes in the hypothalamic grey and white matter area in the absence of microglia revealed migrating oligodendrocyte progenitor cells (OPCs) within the grey matter at E17.5, a time point when OPCs begin to slow their migration. Finally, quantification of cytokine and chemokine signaling in ex vivo E15.5 hypothalamic cultures +/- microglia revealed decreases in the protein levels of several cytokines in the absence of microglia. We assayed the influence of two downregulated cytokines (CCL2 and CXCL10) on neurosphere-forming capacity and lineage commitment of hypothalamic NPCs in culture and showed an increase in NPC proliferation as well as neuronal and oligodendrocyte differentiation. CONCLUSION: These data demonstrate that microglia influence gliogenesis in the developing tuberal hypothalamus.


Assuntos
Astrócitos/citologia , Hipotálamo/citologia , Hipotálamo/embriologia , Microglia/citologia , Oligodendroglia/citologia , Animais , Diferenciação Celular/fisiologia , Camundongos , Células-Tronco Neurais/citologia
11.
Brain Behav Immun ; 89: 224-232, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32592863

RESUMO

Patients with rheumatoid arthritis experience chronic pain, depression and fatigue, even when inflammation of the joints is well controlled. To study the relationship between arthritis, depression, and sustained pain when articular inflammation is no longer observed, we tested the hypothesis that brain TNF drives post-inflammation depression-like behavior and persistent pain in experimental arthritis. The murine model of antigen-induced arthritis (AIA) was used to evaluate the effects of knee inflammation on sustained pain and depression-like behavior. We measured joint pain using an automated dynamic plantar algesiometer and depression-like behavior with the tail suspension test. Cytokines were measured by Luminex assay and ELISA. TNF in the brain was blocked by intracerebroventricular injection of anti-TNF antibodies. Histological damage and elevated levels of cytokines were observed in the knee 24 h after antigen treatment, but not at 13 days. Reduced pain thresholds were seen 24 h and 13 days after treatment. Depression-like behavior was observed on day 13. Treatment with the antidepressant imipramine reduced both depression-like behavior and persistent pain. However, blocking joint pain with the analgesic dipyrone did not alter depression-like behavior. Elevated levels of TNF, CCL2, and CXCL-1 were observed in the hippocampus 24 h after treatment, with TNF remaining elevated at day 13. Intracerebroventricular infusion of an anti-TNF antibody blocked depression-like behavior and reduced persistent pain. We have demonstrated that depression-like behavior and pain is sustained in AIA mice after the resolution of inflammation. These changes are associated with elevated levels of TNF in the hippocampus and are dependent upon brain TNF. The findings reveal an important mechanistic link between the expression of chronic pain and depression in experimental arthritis. Furthermore, they suggest treating depression in rheumatoid arthritis may positively impact other debilitating features of this condition.


Assuntos
Artrite Experimental , Fator de Necrose Tumoral alfa , Animais , Artrite Experimental/complicações , Encéfalo/metabolismo , Depressão , Humanos , Inflamação , Camundongos , Dor , Fator de Necrose Tumoral alfa/metabolismo
12.
J Neurosci ; 38(40): 8515-8525, 2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30108130

RESUMO

Whether synapses in appetite-regulatory brain regions undergo long-term changes in strength in response to satiety peptides is poorly understood. Here we show that following bursts of afferent activity, the neuromodulator and satiety peptide cholecystokinin (CCK) shifts the plasticity of GABA synapses in the dorsomedial nucleus of the hypothalamus of male Sprague Dawley rats from long-term depression to long-term potentiation (LTP). This LTP requires the activation of both type 2 CCK receptors and group 5 metabotropic glutamate receptors, resulting in a rise in astrocytic intracellular calcium and subsequent ATP release. ATP then acts on presynaptic P2X receptors to trigger a prolonged increase in GABA release. Our observations demonstrate a novel form of CCK-mediated plasticity that requires astrocytic ATP release, and could serve as a mechanism for appetite regulation.SIGNIFICANCE STATEMENT Satiety peptides, like cholecystokinin, play an important role in the central regulation of appetite, but their effect on synaptic plasticity is not well understood. The current data provide novel evidence that cholecystokinin shifts the plasticity from long-term depression to long-term potentiation at GABA synapses in the rat dorsomedial nucleus of the hypothalamus. We also demonstrate that this plasticity requires the concerted action of cholecystokinin and glutamate on astrocytes, triggering the release of the gliotransmitter ATP, which subsequently increases GABA release from neighboring inhibitory terminals. This research reveals a novel neuropeptide-induced switch in the direction of synaptic plasticity that requires astrocytes, and could represent a new mechanism by which cholecystokinin regulates appetite.


Assuntos
Trifosfato de Adenosina/metabolismo , Astrócitos/fisiologia , Colecistocinina/fisiologia , Núcleo Hipotalâmico Dorsomedial/fisiologia , Potenciação de Longa Duração , Depressão Sináptica de Longo Prazo , Ácido gama-Aminobutírico/fisiologia , Animais , Masculino , Ratos Sprague-Dawley , Receptor de Glutamato Metabotrópico 5/fisiologia , Receptores da Colecistocinina/fisiologia , Receptores Purinérgicos P2X/fisiologia , Transmissão Sináptica
13.
J Neurosci ; 38(42): 9019-9033, 2018 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-30185466

RESUMO

Emotional dysfunction is common in multiple sclerosis (MS) patients and in mouse models of MS, including experimental autoimmune encephalomyelitis (EAE); however, the etiology of these behaviors is poorly understood. To identify CNS changes associated with these behaviors, we focused on the basolateral amygdala (BLA) because of its central role in the regulation of emotional behavior. Whole-cell recordings were performed in the principal neurons of the BLA in early EAE, before demyelination, T-cell invasion, and motor dysfunction. EAE female mice displayed increased frequency of mEPSCs, with no alteration in amplitude or evoked EPSC paired-pulse ratio compared with controls. We found an increase in the AMPA-NMDA ratio and dendritic spine density, indicating increased numbers of glutamatergic synapses. We saw similar electrophysiological changes in BLA principal neurons after microglia were either inactivated (minocycline) or depleted (Mac1-Saporin) in the BLA. Microglia regulate synapses through pruning, directed by complement protein 3 (C3) expression. C3 was downregulated in the BLA in EAE. Ultrastructural analysis of microglia revealed more complex ramifications and reduced extracellular digestion of cellular elements. We also observed reduced IBA-1 and CD68 staining and lack of proinflammatory cytokine expression in the amygdala. Thus, early EAE is a state of microglial "deactivation" associated with reduced synaptic pruning. This contrasts with the prototypic microglial activation commonly associated with inflammatory CNS disease. Additionally, these data support a role for the acquired immune system to influence both neuronal and microglial function in early CNS autoimmunity.SIGNIFICANCE STATEMENT Microglia help regulate synaptic homeostasis, but there has been little evidence for how this might be important in neuroinflammatory diseases. The data from this study reveal increased synaptic activity and spine density in early stages of experimental autoimmune encephalomyelitis (an animal model of multiple sclerosis) in the basolateral amygdala, a nucleus important in the types of behavioral changes we have previously described. These electrophysiological and morphological effects occurred without significant elevation of local inflammatory cytokines or local demyelination. Unexpectedly, in the context of inflammatory state, we found that microglia were "deactivated." This study provides strong evidence for a link between microglial activity and synaptic function; the conclusions contrast with the generally accepted view that microglia are activated in inflammatory disease.


Assuntos
Complexo Nuclear Basolateral da Amígdala/imunologia , Encefalomielite Autoimune Experimental/imunologia , Ácido Glutâmico/imunologia , Microglia/imunologia , Esclerose Múltipla/imunologia , Neurônios/imunologia , Transmissão Sináptica/imunologia , Animais , Proteínas do Sistema Complemento/imunologia , Citocinas/imunologia , Espinhas Dendríticas/imunologia , Potenciais Pós-Sinápticos Excitadores , Feminino , Camundongos Endogâmicos C57BL , Potenciais Pós-Sinápticos em Miniatura , Receptores de AMPA/imunologia
14.
Epilepsia ; 59(7): 1316-1326, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29858515

RESUMO

OBJECTIVE: In different cohorts, 5%-30% of individuals with autism spectrum disorder (ASD) also have epilepsy. The high co-occurrence of these disorders suggests that a common mechanistic link may exist. The underlying pathophysiology of this comorbidity remains unknown. To investigate the mechanism(s) involved in the pathogenesis of ASD and epilepsy, we developed and validated a novel mouse model that concurrently exhibits hallmark features of both disorders. METHODS: We utilized inbred BTBR T+ Itpr3tf/J (BTBR) mice that exhibit the core behavioral characteristics of ASD (ie, impaired sociability, altered vocalizations, and restricted interests). BTBR mice received a lipopolysaccharide (LPS) or sterile saline injection at postnatal day (P)7, P14, or P21. Cytokine expression was analyzed for interleukin (IL)-1ß, IL-10, IL-6, and tumor necrosis factor α in brain tissue of P7 and adult BTBR mice. Adult BTBR mice were behaviorally analyzed for seizure susceptibility, sociability, communication deficits, and motor stereotypies, and monitored using chronic video-electroencephalography (EEG). RESULTS: Adult male and female BTBR mice treated at P7-P14 with LPS were more sensitive to pentylenetetrazol-induced seizures than saline-treated controls. ASD-like behaviors and hippocampal cytokine levels were unchanged between P7 LPS-treated BTBR mice and controls. EEG recordings from the dorsal hippocampus revealed a significant increase in number and frequency of seizures over the 4-week recording period (P60-P88) in BTBR mice postnatally treated with LPS at P7. These results indicate the presence of a comorbid epileptic phenotype in BTBR mice. SIGNIFICANCE: These findings suggest that an early postnatal immune challenge can increase brain excitability in adult BTBR mice and reveal an underlying epilepsy phenotype. This novel animal model may enable the elucidation of specific molecular alterations that are associated with the concurrent presentation of ASD and epilepsy, which could facilitate the development of targeted therapies for individuals affected by this comorbidity.


Assuntos
Transtorno do Espectro Autista/complicações , Transtorno do Espectro Autista/fisiopatologia , Modelos Animais de Doenças , Encefalite/complicações , Encefalite/fisiopatologia , Epilepsia/complicações , Epilepsia/fisiopatologia , Animais , Córtex Cerebral/fisiopatologia , Comorbidade , Citocinas/sangue , Feminino , Hipocampo/fisiopatologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos , Fenótipo , Gravidez
15.
J Physiol ; 595(1): 247-263, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27568501

RESUMO

KEY POINTS: The present study tested whether HCN channels contribute to the organization of motor cortex and to skilled motor behaviour during a forelimb reaching task. Experimental reductions in HCN channel signalling increase the representation of complex multiple forelimb movements in motor cortex as assessed by intracortical microstimulation. Global HCN1KO mice exhibit reduced reaching accuracy and atypical movements during a single-pellet reaching task relative to wild-type controls. Acute pharmacological inhibition of HCN channels in forelimb motor cortex decreases reaching accuracy and increases atypical movements during forelimb reaching. ABSTRACT: The mechanisms by which distinct movements of a forelimb are generated from the same area of motor cortex have remained elusive. Here we examined a role for HCN channels, given their ability to alter synaptic integration, in the expression of forelimb movement responses during intracortical microstimulation (ICMS) and movements of the forelimb on a skilled reaching task. We used short-duration high-resolution ICMS to evoke forelimb movements following pharmacological (ZD7288), experimental (electrically induced cortical seizures) or genetic approaches that we confirmed with whole-cell patch clamp to substantially reduce Ih current. We observed significant increases in the number of multiple movement responses evoked at single sites in motor maps to all three experimental manipulations in rats or mice. Global HCN1 knockout mice were less successful and exhibited atypical movements on a skilled-motor learning task relative to wild-type controls. Furthermore, in reaching-proficient rats, reaching accuracy was reduced and forelimb movements were altered during infusion of ZD7288 within motor cortex. Thus, HCN channels play a critical role in the separation of overlapping movement responses and allow for successful reaching behaviours. These data provide a novel mechanism for the encoding of multiple movement responses within shared networks of motor cortex. This mechanism supports a viewpoint of primary motor cortex as a site of dynamic integration for behavioural output.


Assuntos
Membro Anterior/fisiologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/fisiologia , Movimento/fisiologia , Neocórtex/fisiologia , Canais de Potássio/fisiologia , Animais , Estimulação Elétrica , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Córtex Motor/efeitos dos fármacos , Córtex Motor/fisiologia , Canais de Potássio/genética , Pirimidinas/farmacologia , Ratos , Ratos Long-Evans
16.
Epilepsia ; 58 Suppl 3: 48-56, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28675557

RESUMO

Epilepsy is associated with a high incidence of comorbid neurologic and psychiatric disorders. This review focuses on the association of epilepsy with autism spectrum disorder (ASD) and depression. There is high concordance of these behavioral pathologies with epilepsy. We review data that unambiguously reveal that epilepsy, ASD, and depression are associated with elevated brain inflammatory markers and that these may interact with serotoninergic pathways. Interference with inflammatory pathways or actions can reduce the severity of seizures, depression, and ASD-like behavior. Inflammation in the brain can be induced by seizure activity as well as by behavioral, environmental, and physiologic stressors. Furthermore, induction of inflammation at an early time point during gestation and in early neonatal life can precipitate both an ASD-like phenotype as well as a more excitable brain. It appears likely that priming of the brain due to early inflammation could provide a means by which subsequent inflammatory processes associated with epilepsy, ASD, and depression may lead to comorbidity.


Assuntos
Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/imunologia , Transtorno Depressivo/diagnóstico , Transtorno Depressivo/imunologia , Epilepsia/diagnóstico , Epilepsia/imunologia , Inflamação Neurogênica/diagnóstico , Inflamação Neurogênica/imunologia , Biomarcadores/análise , Encéfalo/imunologia , Comorbidade , Feminino , Humanos , Recém-Nascido , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Fatores de Risco
17.
J Neurosci ; 35(38): 13160-70, 2015 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-26400945

RESUMO

Somatodendritically released peptides alter synaptic function through a variety of mechanisms, including autocrine actions that liberate retrograde transmitters. Cholecystokinin (CCK) is a neuropeptide expressed in neurons in the dorsomedial hypothalamic nucleus (DMH), a region implicated in satiety and stress. There are clear demonstrations that exogenous CCK modulates food intake and neuropeptide expression in the DMH, but there is no information on how endogenous CCK alters synaptic properties. Here, we provide the first report of somatodendritic release of CCK in the brain in male Sprague Dawley rats. CCK is released from DMH neurons in response to repeated postsynaptic depolarizations, and acts in an autocrine fashion on CCK2 receptors to enhance postsynaptic NMDA receptor function and liberate the retrograde transmitter, nitric oxide (NO). NO subsequently acts presynaptically to enhance GABA release through a soluble guanylate cyclase-mediated pathway. These data provide the first demonstration of synaptic actions of somatodendritically released CCK in the hypothalamus and reveal a new form of retrograde plasticity, depolarization-induced potentiation of inhibition. Significance statement: Somatodendritic signaling using endocannabinoids or nitric oxide to alter the efficacy of afferent transmission is well established. Despite early convincing evidence for somatodendritic release of neurohypophysial peptides in the hypothalamus, there is only limited evidence for this mode of release for other peptides. Here, we provide the first evidence for somatodendritic release of the satiety peptide cholecystokinin (CCK) in the brain. We also reveal a new form of synaptic plasticity in which postsynaptic depolarization results in enhancement of inhibition through the somatodendritic release of CCK.


Assuntos
Colecistocinina/metabolismo , Núcleo Hipotalâmico Dorsomedial/citologia , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo , Animais , Animais Recém-Nascidos , Colecistocinina/farmacologia , GABAérgicos/farmacologia , Guanosina Difosfato/análogos & derivados , Guanosina Difosfato/farmacologia , Técnicas In Vitro , Masculino , Técnicas de Patch-Clamp , Peptídeos/farmacologia , Proglumida/análogos & derivados , Proglumida/farmacologia , Quinazolinonas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptor de Colecistocinina B/antagonistas & inibidores , Receptor de Colecistocinina B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína 25 Associada a Sinaptossoma/antagonistas & inibidores , Proteína 25 Associada a Sinaptossoma/metabolismo , Tionucleotídeos/farmacologia , Ácido gama-Aminobutírico/farmacologia
18.
J Neurosci ; 35(12): 4942-52, 2015 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-25810524

RESUMO

Peripheral inflammatory diseases are often associated with behavioral comorbidities including anxiety, depression, and cognitive dysfunction, but the mechanism for these is not well understood. Changes in the neuronal and synaptic functions associated with neuroinflammation may underlie these behavioral abnormalities. We have used a model of colonic inflammation induced by 2,4,6-trinitrobenzenesulfonic acid in Sprague Dawley rats to identify inflammation-induced changes in hippocampal synaptic transmission. Hippocampal slices obtained 4 d after the induction of inflammation revealed enhanced Schaffer collateral-induced excitatory field potentials in CA1 stratum radiatum. This was associated with larger-amplitude mEPSCs, but unchanged mEPSC frequencies and paired-pulse ratios, suggesting altered postsynaptic effects. Both AMPA- and NMDA-mediated synaptic currents were enhanced, and analysis of AMPA-mediated currents revealed increased contributions of GluR2-lacking receptors. In keeping with this, both transcripts and protein levels of the GluR2 subunit were reduced in hippocampus. Both long-term potentiation (LTP) and depression (LTD) were significantly reduced in hippocampal slices taken from inflamed animals. Chronic administration of the microglial/macrophage activation inhibitor minocycline to the inflamed animals both lowered the level of the cytokine tumor necrosis factor α in the hippocampus and completely abolished the effect of peripheral inflammation on the field potentials and synaptic plasticity (LTP and LTD). Our results reveal profound synaptic changes caused by a mirror microglia-mediated inflammatory response in hippocampus during peripheral organ inflammation. These synaptic changes may underlie the behavioral comorbidities seen in patients.


Assuntos
Região CA1 Hipocampal/fisiologia , Inflamação/fisiopatologia , Microglia/fisiologia , Plasticidade Neuronal/fisiologia , Receptores de AMPA/fisiologia , Transmissão Sináptica/fisiologia , Animais , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/metabolismo , Colo/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Inflamação/induzido quimicamente , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Masculino , Microglia/efeitos dos fármacos , Potenciais Pós-Sinápticos em Miniatura/fisiologia , Minociclina/farmacologia , Minociclina/uso terapêutico , Plasticidade Neuronal/efeitos dos fármacos , Ratos , Receptores de AMPA/metabolismo , Potenciais Sinápticos/fisiologia , Ácido Trinitrobenzenossulfônico , Fator de Necrose Tumoral alfa/metabolismo
20.
Cerebellum ; 14(5): 491-505, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25863812

RESUMO

There have been suggestions that maternal immune activation is associated with alterations in motor behavior in offspring. To explore this further, we treated pregnant mice with polyinosinic:polycytidylic acid (poly(I:C)), a viral mimetic that activates the innate immune system, or saline on embryonic days 13-15. At postnatal day (P) 18, offspring cerebella were collected from perfused brains and immunostained as whole-mounts for zebrin II. Measurements of zebrin II+/- stripes in both sexes indicated that prenatal poly(I:C)-exposed offspring had significantly wider stripes; this difference was also seen in similarly treated offspring in adulthood (~P120). When sagittal sections of the cerebellum were immunostained for calbindin and Purkinje cell numbers were counted, we observed greater numbers of Purkinje cells in poly(I:C) offspring at both P18 and ~ P120. In adolescence (~P40), both male and female prenatal poly(I:C)-exposed offspring exhibited poorer performance on the rotarod and ladder rung tests; deficits in performance on the latter test persisted into adulthood. Offspring of both sexes from poly(I:C) dams also exhibited impaired social interaction in adolescence, but this difference was no longer apparent in adulthood. Our results suggest that maternal immune exposure at a critical time of cerebellum development can enhance neuronal survival or impair normal programmed cell death of Purkinje cells, with lasting consequences on cerebellar morphology and a variety of motor and non-motor behaviors.


Assuntos
Cerebelo/anormalidades , Cerebelo/metabolismo , Transtornos dos Movimentos/etiologia , Malformações do Sistema Nervoso/etiologia , Malformações do Sistema Nervoso/patologia , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Transtornos do Comportamento Social/etiologia , Análise de Variância , Animais , Animais Recém-Nascidos , Calbindinas/metabolismo , Cerebelo/crescimento & desenvolvimento , Cerebelo/patologia , Deficiências do Desenvolvimento/etiologia , Deficiências do Desenvolvimento/patologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Poli I-C/toxicidade , Gravidez , Efeitos Tardios da Exposição Pré-Natal/imunologia , Desempenho Psicomotor/efeitos dos fármacos , Células de Purkinje/efeitos dos fármacos , Células de Purkinje/metabolismo , Células de Purkinje/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA