Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 62(51): 21025-21035, 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38091513

RESUMO

Herein, neptunium(V) carbonates containing sodium or potassium cations were synthesized via chemical precipitation. Various techniques such as scanning electron microscopy, energy-dispersive X-ray spectroscopy, thermogravimetry combined with differential scanning calorimetry, X-ray diffraction, and X-ray absorption spectroscopy were used to analyze the microstructures and elemental compositions of these samples. The crystal structures of hydrated NaNpO2CO3·3H2O (P1, a = 4.3420(2) Å, b = 4.8962(2) Å, c = 10.0933(11) Å, α = 91.014(7)°, ß = 77.834(11)°, and γ = 90.004(10)°) and KNpO2CO3 (P63/mmc, a = b = 5.0994(2) Å, c = 10.2210(15) Å) were determined for the first time using the Rietveld method. The synthesized carbonates exhibited distinct structural features and decomposition behaviors, as demonstrated through thermogravimetry analysis, which revealed the presence of crystalline hydrate water in sodium neptunium(V) carbonate. Furthermore, calcium-containing neptunium(V) carbonates were synthesized and characterized. Samples with the general composition Ca0.5NpO2CO3 were obtained using the ion exchange method and chemical precipitation from solutions containing competing cations (Ca2+, Na+, K+, and Mg2+). The synthesis conditions notably affected the diffraction patterns of the obtained calcium neptunium(V) carbonates. This investigation enhances our understanding of the structural properties and thermodynamic stability of neptunium(V) carbonates in the presence of diverse cations commonly found under radioactive waste disposal conditions.

2.
Environ Sci Technol ; 57(13): 5243-5251, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36940242

RESUMO

The sorption of Ce(III) on three abundant environmental minerals (goethite, anatase, and birnessite) was investigated. Batch sorption experiments using a radioactive 139Ce tracer were performed to investigate the key features of the sorption process. Differences in sorption kinetics and changes in oxidation states were found in the case of the sorption of Ce(III) on birnessite compared to that on other minerals. Speciation of cerium onto all of the studied minerals was investigated using spectral and microscopic methods: high-resolution transmission electron microscopy (HRTEM), electron energy loss spectroscopy (EELS), and X-ray absorption spectroscopy (XAS) in conjunction with theoretical calculations. It was found that during the sorption process onto birnessite, Ce(III) was oxidized to Ce(IV), while the Ce(III) on goethite and anatase surfaces remained unchanged. Oxidation of Ce(III) by sorption on birnessite was also accompanied by the formation of CeO2 nanoparticles on the mineral surface, which depended on the initial cerium concentration and pH value.


Assuntos
Cério , Minerais , Minerais/química , Adsorção
3.
J Synchrotron Radiat ; 29(Pt 2): 288-294, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35254290

RESUMO

Extended X-ray absorption fine structure (EXAFS) is a comprehensive and usable method for characterizing the structures of various materials, including radioactive and nuclear materials. Unceasing discussions about the interpretation of EXAFS results for actinide nanoparticles (NPs) or colloids were still present during the last decade. In this study, new experimental data for PuO2 and CeO2 NPs with different average sizes were compared with published data on AnO2 NPs that highlight the best fit and interpretation of the structural data. In terms of the structure, PuO2, CeO2, ThO2, and UO2 NPs exhibit similar behaviors. Only ThO2 NPs have a more disordered and even partly amorphous structure, which results in EXAFS characteristics. The proposed new core-shell model for NPs with calculated effective coordination number perfectly fits the results of the variations in a metal-metal shell with a decrease in NP size.

4.
Chemistry ; 27(1): 252-263, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-32956492

RESUMO

The structural characterisation of actinide nanoparticles (NPs) is of primary importance and hard to achieve, especially for non-homogeneous samples with NPs less than 3 nm. By combining high-energy X-ray scattering (HEXS) and high-energy-resolution fluorescence-detected X-ray absorption near-edge structure (HERFD XANES) analysis, we have characterised for the first time both the short- and medium-range order of ThO2 NPs obtained by chemical precipitation. By using this methodology, a novel insight into the structures of NPs at different stages of their formation has been achieved. The pair distribution function revealed a high concentration of ThO2 small units similar to thorium hexamer clusters mixed with 1 nm ThO2 NPs in the initial steps of formation. Drying the precipitates at around 150 °C promoted the recrystallisation of the smallest units into more thermodynamically stable ThO2 NPs. HERFD XANES analysis at the thorium M4 edge, a direct probe for f states, showed variations that we have correlated with the breakdown of the local symmetry around the thorium atoms, which most likely concerns surface atoms. Together, HEXS and HERFD XANES are a powerful methodology for investigating actinide NPs and their formation mechanism.

5.
Chemistry ; 27(1): 5, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33210366

RESUMO

Invited for the cover of this issue is Lucia Amidani and co-workers from the The European Synchrotron, Helmholtz Zentrum Dresden-Rossendorf, Lomonosov Moscow State University, Kurchatov Institute, and the Université Grenoble Alpes. The image depicts the atomic structure of the sample being viewed through "atomic googles", which represent the X-ray techniques used in this work. Read the full text of the article at 10.1002/chem.202003360.

6.
Phys Chem Chem Phys ; 21(20): 10635-10643, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31080986

RESUMO

Developing characterization techniques and analysis methods adapted to the investigation of nanoparticles (NPs) is of fundamental importance considering the role of these materials in many fields of research. The study of actinide based NPs, despite their environmental relevance, is still underdeveloped compared to that of NPs based on stable and lighter elements. We present here an investigation of ThO2 NPs performed with High-Energy Resolution Fluorescence Detected (HERFD) X-ray Absorption Near-Edge Structure (XANES) and with ab initio XANES simulations. The first post-edge feature of Th L3 edge HERFD XANES disappears in small NPs and simulations considering non-relaxed structural models reproduce the trends observed in experimental data. Inspection of the simulations of Th atoms in the core and on the surface of the NP indeed demonstrates that the first post-edge feature is very sensitive to the lowering of the number of coordinating atoms and therefore to the more exposed Th atoms at the surface of the NP. The sensitivity of the L3 edge HERFD XANES to low coordinated atoms at the surface stems from the hybridization of the d-Density of States (DOS) of Th with both O and Th neighboring atoms. This may be a common feature to other oxide systems that can be exploited to investigate surface interactions.

7.
Nanomaterials (Basel) ; 12(24)2022 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-36558337

RESUMO

This study is one of the first attempts to assess CeO2 nanoparticles as a nanoplatform for radiopharmaceuticals with radionuclides. The process of functionalization using a bifunctional azacrown ligand is described, and the resulting conjugates are characterized by IR and Raman spectroscopy. Their complexes with 207Bi show a high stability in medically relevant media, thus encouraging the further study of these conjugates in vivo as potential combined radiopharmaceuticals.

8.
Nanoscale ; 12(35): 18039-18048, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32648876

RESUMO

The nanoscience field often produces results more mystifying than any other discipline. It has been argued that changes in the plutonium dioxide (PuO2) particle size from bulk to nano can have a drastic effect on PuO2 properties. Here we report a full characterization of PuO2 nanoparticles (NPs) at the atomic level and probe their local and electronic structures by a variety of methods available at the synchrotron, including extended X-ray absorption fine structure (EXAFS) at the Pu L3 edge, X-ray absorption near edge structure (XANES) in high energy resolution fluorescence detection (HERFD) mode at the Pu L3 and M4 edges, high energy X-ray scattering (HEXS) and X-ray diffraction (XRD). The particles were synthesized from precursors with different oxidation states of plutonium (III, IV, and V) under various environmentally and waste storage relevant conditions (pH 8 and pH > 10). Our experimental results analyzed with state-of-the-art theoretical approaches demonstrate that well dispersed, crystalline NPs with a size of ∼2.5 nm in diameter are always formed in spite of diverse chemical conditions. Identical crystal structures and the presence of only the Pu(iv) oxidation state in all NPs, reported here for the first time, indicate that the structure of PuO2 NPs is very similar to that of the bulk PuO2. All methods give complementary information and show that investigated fundamental properties of PuO2 NPs, rather than being exotic, are very similar to those of the bulk PuO2.

9.
Nanoscale ; 11(39): 18142-18149, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31555787

RESUMO

Understanding the complex chemistry of functional nanomaterials is of fundamental importance. Controlled synthesis and characterization at the atomic level is essential to gain deeper insight into the unique chemical reactivity exhibited by many nanomaterials. Cerium oxide nanoparticles have many industrial and commercial applications, resulting from very strong catalytic, pro- and anti-oxidant activity. However, the identity of the active species and the chemical mechanisms imparted by nanoceria remain elusive, impeding the further development of new applications. Here, we explore the behavior of cerium oxide nanoparticles of different sizes at different temperatures and trace the electronic structure changes by state-of-the-art soft and hard X-ray experiments combined with computational methods. We confirm the absence of the Ce(iii) oxidation state at the surface of CeO2 nanoparticles, even for particles as small as 2 nm. Synchrotron X-ray absorption experiments at Ce L3 and M5 edges, combined with X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and small angle X-ray scattering (SAXS) and theoretical calculations demonstrate that in addition to the nanoceria charge stability, the formation of hydroxyl groups at the surface profoundly affects the chemical performance of these nanomaterials.

10.
Dalton Trans ; 47(32): 11239-11244, 2018 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-30058661

RESUMO

Precipitates formed by the neutralisation of Pu(iii), Pu(iv), Pu(v), and Pu(vi) solutions were characterised by HRTEM, SAXS, and XRD in the suspensions. PuO2 nanoparticles uniform in size (typical diameter around 2.5 nm) and phase composition were observed in all cases under equilibrium conditions. For Pu(vi), the precipitation reactions proceed via an intermediate product.

11.
ACS Cent Sci ; 2(4): 253-65, 2016 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-27163056

RESUMO

Porous aromatic frameworks (PAFs) incorporating a high concentration of acid functional groups possess characteristics that are promising for use in separating lanthanide and actinide metal ions, as required in the treatment of radioactive waste. These materials have been shown to be indefinitely stable to concentrated acids and bases, potentially allowing for multiple adsorption/stripping cycles. Additionally, the PAFs combine exceptional features from MOFs and inorganic/activated carbons giving rise to tunable pore surfaces and maximum chemical stability. Herein, we present a study of the adsorption of selected metal ions, Sr(2+), Fe(3+), Nd(3+), and Am(3+), from aqueous solutions employing a carbon-based porous aromatic framework, BPP-7 (Berkeley Porous Polymer-7). This material displays high metal loading capacities together with excellent adsorption selectivity for neodymium over strontium based on Langmuir adsorption isotherms and ideal adsorbed solution theory (IAST) calculations. Based in part upon X-ray absorption spectroscopy studies, the stronger adsorption of neodymium is attributed to multiple metal ion and binding site interactions resulting from the densely functionalized and highly interpenetrated structure of BPP-7. Recyclability and combustibility experiments demonstrate that multiple adsorption/stripping cycles can be completed with minimal degradation of the polymer adsorption capacity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA