Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Geroscience ; 41(2): 229-242, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30937823

RESUMO

The first domesticated companion animal, the dog, is currently represented by over 190 unique breeds. Across these numerous breeds, dogs have exceptional variation in lifespan (inversely correlated with body size), presenting an opportunity to discover longevity-determining traits. We performed a genome-wide association study on 4169 canines representing 110 breeds and identified novel candidate regulators of longevity. Interestingly, known functions within the identified genes included control of coat phenotypes such as hair length, as well as mitochondrial properties, suggesting that thermoregulation and mitochondrial bioenergetics play a role in lifespan variation. Using primary dermal fibroblasts, we investigated mitochondrial properties of short-lived (large) and long-lived (small) dog breeds. We found that cells from long-lived breeds have more uncoupled mitochondria, less electron escape, greater respiration, and capacity for respiration. Moreover, our data suggest that long-lived breeds have higher rates of catabolism and ß-oxidation, likely to meet elevated respiration and electron demand of their uncoupled mitochondria. Conversely, cells of short-lived (large) breeds may accumulate amino acids and fatty acid derivatives, which are likely used for biosynthesis and growth. We hypothesize that the uncoupled metabolic profile of long-lived breeds likely stems from their smaller size, reduced volume-to-surface area ratio, and therefore a greater need for thermogenesis. The uncoupled energetics of long-lived breeds lowers reactive oxygen species levels, promotes cellular stress tolerance, and may even prevent stiffening of the actin cytoskeleton. We propose that these cellular characteristics delay tissue dysfunction, disease, and death in long-lived dog breeds, contributing to canine aging diversity.


Assuntos
Envelhecimento/genética , Metabolismo Energético/genética , Estudo de Associação Genômica Ampla , Longevidade/genética , Mitocôndrias/genética , Animais , Tamanho Corporal , Cruzamento , Células Cultivadas , Cães , Fibroblastos/citologia , Fibroblastos/fisiologia , Estresse Oxidativo , Fenótipo , Espécies Reativas de Oxigênio/metabolismo , Especificidade da Espécie
2.
Obesity (Silver Spring) ; 25(3): 616-625, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28127879

RESUMO

OBJECTIVE: More than one-third of U.S. adults have obesity, causing an alarming increase in obesity-related comorbidities such as type 2 diabetes. The functional role of mitochondrial carrier homolog 2 (MTCH2), a human obesity-associated gene, in lipid homeostasis was investigated in Caenorhabditis elegans, cell culture, and mice. METHODS: In C. elegans, MTCH2/MTCH-1 was depleted, using RNAi and a genetic mutant, and overexpressed to assess its effect on lipid accumulation. In cells and mice, shRNAs against MTCH2 were used for knockdown and MTCH2 overexpression vectors were used for overexpression to study the role of this gene in fat accumulation. RESULTS: MTCH2 knockdown reduced lipid accumulation in adipocyte-like cells in vitro and in C. elegans and mice in vivo. MTCH2 overexpression increased fat accumulation in cell culture, C. elegans, and mice. Acute MTCH2 inhibition reduced fat accumulation in animals subjected to a high-fat diet. Finally, MTCH2 influenced estrogen receptor 1 (ESR1) activity. CONCLUSIONS: MTCH2 is a conserved regulator of lipid homeostasis. MTCH2 was found to be both required and sufficient for lipid homeostasis shifts, suggesting that pharmacological inhibition of MTCH2 could be therapeutic for treatment of obesity and related disorders. MTCH2 could influence lipid homeostasis through inhibition of ESR1 activity.


Assuntos
Adipócitos/metabolismo , Homeostase/genética , Metabolismo dos Lipídeos/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Animais , Caenorhabditis elegans , Proteínas de Transporte/metabolismo , Diabetes Mellitus Tipo 2 , Dieta Hiperlipídica , Receptor alfa de Estrogênio/metabolismo , Camundongos , Proteínas de Transporte da Membrana Mitocondrial/genética , Obesidade/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA