Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(6): 3307-3318, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-31980525

RESUMO

Enzymes are catalysts in biochemical reactions that, by definition, increase rates of reactions without being altered or destroyed. However, when that enzyme is a protease, a subclass of enzymes that hydrolyze other proteins, and that protease is in a multiprotease system, protease-as-substrate dynamics must be included, challenging assumptions of enzyme inertness, shifting kinetic predictions of that system. Protease-on-protease inactivating hydrolysis can alter predicted protease concentrations used to determine pharmaceutical dosing strategies. Cysteine cathepsins are proteases capable of cathepsin cannibalism, where one cathepsin hydrolyzes another with substrate present, and misunderstanding of these dynamics may cause miscalculations of multiple proteases working in one proteolytic network of interactions occurring in a defined compartment. Once rates for individual protease-on-protease binding and catalysis are determined, proteolytic network dynamics can be explored using computational models of cooperative/competitive degradation by multiple proteases in one system, while simultaneously incorporating substrate cleavage. During parameter optimization, it was revealed that additional distraction reactions, where inactivated proteases become competitive inhibitors to remaining, active proteases, occurred, introducing another network reaction node. Taken together, improved predictions of substrate degradation in a multiple protease network were achieved after including reaction terms of autodigestion, inactivation, cannibalism, and distraction, altering kinetic considerations from other enzymatic systems, since enzyme can be lost to proteolytic degradation. We compiled and encoded these dynamics into an online platform (https://plattlab.shinyapps.io/catKLS/) for individual users to test hypotheses of specific perturbations to multiple cathepsins, substrates, and inhibitors, and predict shifts in proteolytic network reactions and system dynamics.


Assuntos
Peptídeo Hidrolases , Proteólise , Catepsinas/química , Catepsinas/metabolismo , Simulação por Computador , Cinética , Modelos Moleculares , Peptídeo Hidrolases/química , Peptídeo Hidrolases/metabolismo , Ligação Proteica , Especificidade por Substrato
2.
Cytotherapy ; 24(2): 137-148, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34696960

RESUMO

BACKGROUND AIMS: Mesenchymal stromal cells (MSCs) have shown great promise in the field of regenerative medicine, as many studies have shown that MSCs possess immunomodulatory function. Despite this promise, no MSC therapies have been licensed by the Food and Drug Administration. This lack of successful clinical translation is due in part to MSC heterogeneity and a lack of critical quality attributes. Although MSC indoleamine 2,3-dioxygnease (IDO) activity has been shown to correlate with MSC function, multiple predictive markers may be needed to better predict MSC function. METHODS: Three MSC lines (two bone marrow-derived, one induced pluripotent stem cell-derived) were expanded to three passages. At the time of harvest for each passage, cell pellets were collected for nuclear magnetic resonance (NMR) and ultra-performance liquid chromatography mass spectrometry (MS), and media were collected for cytokine profiling. Harvested cells were also cryopreserved for assessing function using T-cell proliferation and IDO activity assays. Linear regression was performed on functional data against NMR, MS and cytokines to reduce the number of important features, and partial least squares regression (PLSR) was used to obtain predictive markers of T-cell suppression based on variable importance in projection scores. RESULTS: Significant functional heterogeneity (in terms of T-cell suppression and IDO activity) was observed between the three MSC lines, as were donor-dependent differences based on passage. Omics characterization revealed distinct differences between cell lines using principal component analysis. Cell lines separated along principal component one based on tissue source (bone marrow-derived versus induced pluripotent stem cell-derived) for NMR, MS and cytokine profiles. PLSR modeling of important features predicted MSC functional capacity with NMR (R2 = 0.86), MS (R2 = 0.83), cytokines (R2 = 0.70) and a combination of all features (R2 = 0.88). CONCLUSIONS: The work described here provides a platform for identifying markers for predicting MSC functional capacity using PLSR modeling that could be used as release criteria and guide future manufacturing strategies for MSCs and other cell therapies.


Assuntos
Células-Tronco Mesenquimais , Linfócitos T , Células da Medula Óssea , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Citocinas , Metabolômica
3.
Arterioscler Thromb Vasc Biol ; 40(5): 1220-1230, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32160775

RESUMO

OBJECTIVE: Sickle cell anemia (SCA) causes chronic inflammation and multiorgan damage. Less understood are the arterial complications, most evident by increased strokes among children. Proteolytic mechanisms, biomechanical consequences, and pharmaceutical inhibitory strategies were studied in a mouse model to provide a platform for mechanistic and intervention studies of large artery damage due to sickle cell disease. Approach and Results: Townes humanized transgenic mouse model of SCA was used to test the hypothesis that elastic lamina and structural damage in carotid arteries increased with age and was accelerated in mice homozygous for SCA (sickle cell anemia homozygous genotype [SS]) due to inflammatory signaling pathways activating proteolytic enzymes. Elastic lamina fragmentation observed by 1 month in SS mice compared with heterozygous littermate controls (sickle cell trait heterozygous genotype [AS]). Positive immunostaining for cathepsin K, a powerful collagenase and elastase, confirmed accelerated proteolytic activity in SS carotids. Larger cross-sectional areas were quantified by magnetic resonance angiography and increased arterial compliance in SS carotids were also measured. Inhibiting JNK (c-jun N-terminal kinase) signaling with SP600125 significantly reduced cathepsin K expression, elastin fragmentation, and carotid artery perimeters in SS mice. By 5 months of age, continued medial thinning and collagen degradation was mitigated by treatment of SS mice with JNK inhibitor. CONCLUSIONS: Arterial remodeling due to SCA is mediated by JNK signaling, cathepsin proteolytic upregulation, and degradation of elastin and collagen. Demonstration in Townes mice establishes their utility for mechanistic studies of arterial vasculopathy, related complications, and therapeutic interventions for large artery damage due to SCA.


Assuntos
Anemia Falciforme/tratamento farmacológico , Antracenos/farmacologia , Artérias Carótidas/efeitos dos fármacos , Doenças das Artérias Carótidas/prevenção & controle , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Remodelação Vascular/efeitos dos fármacos , Anemia Falciforme/enzimologia , Anemia Falciforme/genética , Anemia Falciforme/fisiopatologia , Animais , Artérias Carótidas/enzimologia , Artérias Carótidas/fisiopatologia , Doenças das Artérias Carótidas/enzimologia , Doenças das Artérias Carótidas/genética , Doenças das Artérias Carótidas/fisiopatologia , Catepsina K/metabolismo , Colágeno/metabolismo , Modelos Animais de Doenças , Elastina/metabolismo , Hemoglobinas/genética , Homozigoto , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos Transgênicos , Mutação , Proteólise , Transdução de Sinais , Fatores de Tempo
4.
Blood Cells Mol Dis ; 85: 102486, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32841841

RESUMO

To define morphological changes in carotid and cerebral arteries in sickle cell transgenic mice (SS) as they age, a combination of ultrasound and microcomputed tomography of plastinated arteries was used to quantify arterial dimensions and changes in mice 4, 12, and 24 weeks of age. 12-week SS mice had significantly larger common carotid artery diameters than AS mice, which continued through to the extracranial and intracranial portions of the internal carotid artery (ICA). There were also side specific differences in diameters between the left and right vessels. Significant ICA tapering along its length occurred by 12- and 24-weeks in SS mice, decreasing by as much as 70%. Significant narrowing along the length was also measured in SS anterior cerebral arteries at 12- and 24-weeks, but not AS. Collectively, these findings indicate that sickle cell anemia induces arterial remodeling in 12- and 24-weeks old mice. Catalog of measurements are also provided for the common carotid, internal carotid, anterior cerebral, and middle cerebral arteries for AS and SS genotypes, as a reference for other investigators using mathematical and computational models of age-dependent arterial complications caused by sickle cell anemia.


Assuntos
Anemia Falciforme/diagnóstico por imagem , Artérias Carótidas/diagnóstico por imagem , Artérias Cerebrais/diagnóstico por imagem , Envelhecimento , Anemia Falciforme/patologia , Animais , Artérias Carótidas/patologia , Artérias Cerebrais/patologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos Transgênicos , Ultrassonografia , Microtomografia por Raio-X
5.
Circ Res ; 120(4): 701-712, 2017 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-27872050

RESUMO

RATIONALE: Studies have demonstrated that exosomes can repair cardiac tissue post-myocardial infarction and recapitulate the benefits of cellular therapy. OBJECTIVE: We evaluated the role of donor age and hypoxia of human pediatric cardiac progenitor cell (CPC)-derived exosomes in a rat model of ischemia-reperfusion injury. METHODS AND RESULTS: Human CPCs from the right atrial appendages from children of different ages undergoing cardiac surgery for congenital heart defects were isolated and cultured under hypoxic or normoxic conditions. Exosomes were isolated from the culture-conditioned media and delivered to athymic rats after ischemia-reperfusion injury. Echocardiography at day 3 post-myocardial infarction suggested statistically improved function in neonatal hypoxic and neonatal normoxic groups compared with saline-treated controls. At 28 days post-myocardial infarction, exosomes derived from neonatal normoxia, neonatal hypoxia, infant hypoxia, and child hypoxia significantly improved cardiac function compared with those from saline-treated controls. Staining showed decreased fibrosis and improved angiogenesis in hypoxic groups compared with controls. Finally, using sequencing data, a computational model was generated to link microRNA levels to specific outcomes. CONCLUSIONS: CPC exosomes derived from neonates improved cardiac function independent of culture oxygen levels, whereas CPC exosomes from older children were not reparative unless subjected to hypoxic conditions. Cardiac functional improvements were associated with increased angiogenesis, reduced fibrosis, and improved hypertrophy, resulting in improved cardiac function; however, mechanisms for normoxic neonatal CPC exosomes improved function independent of those mechanisms. This is the first study of its kind demonstrating that donor age and oxygen content in the microenvironment significantly alter the efficacy of human CPC-derived exosomes.


Assuntos
Exossomos/fisiologia , MicroRNAs/fisiologia , Miócitos Cardíacos/fisiologia , Traumatismo por Reperfusão/terapia , Células-Tronco/fisiologia , Fatores Etários , Animais , Hipóxia Celular/fisiologia , Células Cultivadas , Criança , Pré-Escolar , Compreensão , Método Duplo-Cego , Exossomos/transplante , Humanos , Lactente , Recém-Nascido , MicroRNAs/administração & dosagem , Miócitos Cardíacos/transplante , Distribuição Aleatória , Ratos , Ratos Nus , Traumatismo por Reperfusão/fisiopatologia , Transplante de Células-Tronco/métodos
6.
Biochim Biophys Acta Gen Subj ; 1862(9): 1925-1932, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29944896

RESUMO

BACKGROUND: Fibrin formation and dissolution are attributed to cascades of protease activation concluding with thrombin activation, and plasmin proteolysis for fibrin breakdown. Cysteine cathepsins are powerful proteases secreted by endothelial cells and others during cardiovascular disease and diabetes. Their fibrinolytic activity and putative role in hemostasis has not been well described. METHODS: Fibrin gels were polymerized and incubated with recombinant human cathepsins (cat) K, L, or S, or plasmin, for dose-dependent and time-dependent studies. Dissolution of fibrin gels was imaged. SDS-PAGE was used to resolve cleaved fragments released from fibrin gels and remnant insoluble fibrin gel that was solubilized prior to electrophoresis to assess fibrin α, ß, and γ polypeptide hydrolysis by cathepsins. Multiplex cathepsin zymography determined active amounts of cathepsins remaining. RESULTS: There was significant loss of α and ß fibrin polypeptides after incubation with cathepsins, with catS completely dissolving fibrin gel by 24 h. Binding to fibrin stabilized catL active time; it associated with cleaved fibrin fragments of multiple sizes. This was not observed for catK or S. CatS also remained active for longer times during fibrin incubation, but its association/binding did not withstand SDS-PAGE preparation. CONCLUSIONS: Human cathepsins K, L, and S are fibrinolytic, and specifically can degrade the α and ß fibrin polypeptide chains, generating fragments unique from plasmin. GENERAL SIGNIFICANCE: Demonstration of cathepsins K, L, and S fibrinolytic activity leads to further investigation of contributory roles in disrupting vascular hemostasis, or breakdown of fibrin-based engineered vascular constructs where non-plasmin mediated fibrinolysis must be considered.


Assuntos
Catepsina K/metabolismo , Catepsina L/metabolismo , Catepsinas/metabolismo , Fibrina/metabolismo , Fibrinolisina/metabolismo , Fibrinólise , Géis , Hemostasia , Humanos
7.
Circ Res ; 116(2): 255-63, 2015 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-25344555

RESUMO

RATIONALE: Myocardial infarction is a leading cause of death in developed nations, and there remains a need for cardiac therapeutic systems that mitigate tissue damage. Cardiac progenitor cells (CPCs) and other stem cell types are attractive candidates for treatment of myocardial infarction; however, the benefit of these cells may be as a result of paracrine effects. OBJECTIVE: We tested the hypothesis that CPCs secrete proregenerative exosomes in response to hypoxic conditions. METHODS AND RESULTS: The angiogenic and antifibrotic potential of secreted exosomes on cardiac endothelial cells and cardiac fibroblasts were assessed. We found that CPC exosomes secreted in response to hypoxia enhanced tube formation of endothelial cells and decreased profibrotic gene expression in TGF-ß-stimulated fibroblasts, indicating that these exosomes possess therapeutic potential. Microarray analysis of exosomes secreted by hypoxic CPCs identified 11 miRNAs that were upregulated compared with exosomes secreted by CPCs grown under normoxic conditions. Principle component analysis was performed to identify miRNAs that were coregulated in response to distinct exosome-generating conditions. To investigate the cue-signal-response relationships of these miRNA clusters with a physiological outcome of tube formation or fibrotic gene expression, partial least squares regression analysis was applied. The importance of each up- or downregulated miRNA on physiological outcomes was determined. Finally, to validate the model, we delivered exosomes after ischemia-reperfusion injury. Exosomes from hypoxic CPCs improved cardiac function and reduced fibrosis. CONCLUSIONS: These data provide a foundation for subsequent research of the use of exosomal miRNA and systems biology as therapeutic strategies for the damaged heart.


Assuntos
Exossomos/fisiologia , MicroRNAs/fisiologia , Miócitos Cardíacos/fisiologia , Células-Tronco/fisiologia , Biologia de Sistemas/métodos , Animais , Animais Recém-Nascidos , Hipóxia Celular/fisiologia , Ratos , Ratos Sprague-Dawley
8.
J Thromb Thrombolysis ; 43(1): 43-51, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27664114

RESUMO

Sickle cell disease is a single point mutation disease that is known to alter the coagulation system, leading to hypercoagulable plasma conditions. These hypercoagulable conditions can lead to complications in the vasculature, caused by fibrin clots that form undesirably. There is a need to understand the morphology and structure of fibrin clots from patients with sickle cell disease, as this could lead to further discovery of treatments and life-saving therapies. In this work, a computational imaging analysis method is presented to evaluate fibrin agglomeration in the presence of erythrocytes (RBCs) homozygous for the sickle cell mutation (SS). Numerical algorithms were used to determine agglomeration of fibrin fibers within a matrix with SS RBCs to test the hypothesis that fibrin matrices with the inclusion of SS RBCs possess a more agglomerated structure than native fibrin matrices with AA RBCs. The numerical results showed that fibrin structures with SS RBCs displayed an overall higher degree of agglomeration as compared to native fibrin structures. The computational algorithm was also used to evaluate fibrin fiber overlap (aggregation) and anisotropy (orientation) in normal fibrin matrices compared to fibrin matrices polymerized around SS RBCs; however, there was no statistical difference. Ultrasound measurements of stiffness revealed rigid RBCs in the case of samples derived from homozygous SS blood, and densely evolving matrices, when compared to normal fibrin with the inclusion of AA RBCs. An agglomeration model is suggested to quantify the fibrin aggregation/clustering near RBCs for both normal fibrin matrices and for the altered structures. The results of this work are important in the sense that the understanding of aggregation and morphology in fibrin clots with incorporation of RBCs from persons living with sickle cell anemia may elucidate the complexities of comorbidities and other disease complications.


Assuntos
Anemia Falciforme/sangue , Eritrócitos/metabolismo , Fibrina/ultraestrutura , Imageamento Tridimensional/métodos , Microscopia Confocal/métodos , Algoritmos , Anemia Falciforme/genética , Agregação Eritrocítica/genética , Fibrina/metabolismo , Homozigoto , Humanos , Agregados Proteicos
9.
Biol Chem ; 397(5): 459-68, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26760306

RESUMO

Cathepsins K and V are powerful elastases elevated in endothelial cells by tumor necrosis factor-α (TNFα) stimulation and disturbed blood flow both of which contribute to inflammation-mediated arterial remodeling. However, mechanisms behind endothelial cell integration of biochemical and biomechanical cues to regulate cathepsin production are not known. To distinguish these mechanisms, human aortic endothelial cells (HAECs) were stimulated with TNFα and exposed to pro-remodeling or vasoprotective shear stress profiles. TNFα upregulated cathepsin K via JNK/c-jun activation, but vasoprotective shear stress inhibited TNFα-stimulated cathepsin K expression. JNK/c-jun were still phosphorylated, but cathepsin K mRNA levels were significantly reduced to almost null indicating separate biomechanical regulation of cathepsin K by shear stress separate from biochemical stimulation. Treatment with Bay 11-7082, an inhibitor of IκBα phosphorylation, was sufficient to block induction of cathepsin K by both pro-remodeling shear stress and TNFα, implicating NF-κB as the biomechanical regulator, and its protein levels were reduced in HAECs by vasoprotective shear stress. In conclusion, NF-κB and AP-1 activation were necessary to activate cathepsin K expression in endothelial cells, highlighting integration of biochemical and biomechanical stimuli to control cathepsins K and V, powerful elastases implicated for arterial remodeling due to chronic inflammation and disturbed blood flow.


Assuntos
Catepsina K/metabolismo , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , NF-kappa B/metabolismo , Fator de Transcrição AP-1/metabolismo , Fenômenos Biomecânicos , Células Cultivadas , Humanos , Proteínas I-kappa B/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Inibidor de NF-kappaB alfa , Fosforilação , Estresse Mecânico , Fator de Necrose Tumoral alfa/farmacologia
10.
Blood ; 124(12): 1941-50, 2014 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-25075126

RESUMO

Sphingolipids are a class of lipids containing a backbone of sphingoid bases that can be produced de novo through the reaction of palmitate and serine and further metabolized through the activity of various enzymes to produce intermediates with diverse roles in cellular processes and signal transduction. One of these intermediates, sphingosine 1-phosphate (S1P), is stored at high concentrations (1 µM) in red blood cells (RBCs) and directs a wide array of cellular processes mediated by 5 known G-protein coupled receptors (S1P1-S1P5). In this study, we show that RBC membrane alterations in sickle cell disease enhance the activation acid sphingomyelinase by 13%, resulting in increased production and storage of sphingosine (2.6-fold) and S1P (3.5-fold). We also show that acid sphingomyelinase enhances RBC-derived microparticle (MP) generation. These MPs are internalized by myeloid cells and promote proinflammatory cytokine secretion and endothelial cell adhesion, suggesting that potential crosstalk between circulating inflammatory cells and MPs may contribute to the inflammation-rooted pathogenesis of the disease. Treatment with amitriptyline reduces MP generation in vitro and in vivo and might be used to mitigate inflammatory processes in sickle cell disease.


Assuntos
Anemia Falciforme/sangue , Anemia Falciforme/enzimologia , Micropartículas Derivadas de Células/enzimologia , Eritrócitos Anormais/enzimologia , Esfingomielina Fosfodiesterase/sangue , Anemia Falciforme/etiologia , Animais , Adesão Celular , Moléculas de Adesão Celular/sangue , Modelos Animais de Doenças , Células Endoteliais/patologia , Hemoglobina Falciforme/genética , Humanos , Inflamação/sangue , Inflamação/enzimologia , Lisofosfolipídeos/sangue , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Camundongos Transgênicos , Esfingolipídeos/sangue , Esfingosina/análogos & derivados , Esfingosina/sangue
11.
Carcinogenesis ; 36(9): 1019-27, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26069256

RESUMO

To develop new and effective chemopreventive agents against bone metastasis, we assessed the effects of muscadine grape skin extract (MSKE), whose main bioactive component is anthocyanin, on bone turnover, using prostate and breast cancer cell models overexpressing Snail transcription factor. MSKE has been shown previously to promote apoptosis in prostate cancer cells without affecting normal prostate epithelial cells. Snail is overexpressed in prostate and breast cancer, and is associated with increased invasion, migration and bone turnover/osteoclastogenesis. Cathepsin L (CatL) is a cysteine cathepsin protease that is overexpressed in cancer and involved in bone turnover. Snail overexpression in prostate (LNCaP, ARCaP-E) and breast (MCF-7) cancer cells led to increased CatL expression/activity and phosphorylated STAT-3 (pSTAT-3), compared to Neo vector controls, while the reverse was observed in C4-2 (the aggressive subline of LNCaP) cells with Snail knockdown. Moreover, CatL expression was higher in prostate and breast tumor tissue compared to normal tissue. MSKE decreased Snail and pSTAT3 expression, and abrogated Snail-mediated CatL activity, migration and invasion. Additionally, Snail overexpression promoted osteoclastogenesis, which was significantly inhibited by the MSKE as effectively as Z-FY-CHO, a CatL-specific inhibitor, or osteoprotegerin, a receptor activator of nuclear factor kappa B ligand (RANKL) antagonist. Overall, these novel findings suggest that Snail regulation of CatL may occur via STAT-3 signaling and can be antagonized by MSKE, leading to decreased cell invasion, migration and bone turnover. Therefore, inhibition using a natural product such as MSKE could potentially be a promising bioactive compound for bone metastatic cancer.


Assuntos
Anticarcinógenos/farmacologia , Neoplasias Ósseas/prevenção & controle , Neoplasias da Mama/patologia , Catepsina L/antagonistas & inibidores , Extratos Vegetais/farmacologia , Neoplasias da Próstata/patologia , Fatores de Transcrição/antagonistas & inibidores , Vitis/química , Animais , Anticarcinógenos/uso terapêutico , Apoptose/efeitos dos fármacos , Neoplasias Ósseas/secundário , Catepsina L/biossíntese , Catepsina L/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Quimioprevenção/métodos , Feminino , Humanos , Células MCF-7 , Masculino , Camundongos , Camundongos Nus , Invasividade Neoplásica , Osteoclastos/citologia , Osteogênese/efeitos dos fármacos , Osteoprotegerina/farmacologia , Extratos Vegetais/uso terapêutico , Ligante RANK/antagonistas & inibidores , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição da Família Snail , Fatores de Transcrição/biossíntese
12.
J Biol Chem ; 287(33): 27723-30, 2012 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-22730330

RESUMO

Cathepsins S and K are potent mammalian proteases secreted into the extracellular space and have been implicated in elastin and collagen degradation in diseases such as atherosclerosis and osteoporosis. Studies of individual cathepsins hydrolyzing elastin or collagen have provided insight into their binding and kinetics, but cooperative or synergistic activity between cathepsins K and S is less described. Using fluorogenic substrate assays, Western blotting, cathepsin zymography, and computational analyses, we uncovered cathepsin cannibalism, a novel mechanism by which cathepsins degrade each other as well as the substrate, with cathepsin S predominantly degrading cathepsin K. As a consequence of these proteolytic interactions, a reduction in total hydrolysis of elastin and type I collagen was measured compared with computationally predicted values derived from individual cathepsin assays. Furthermore, type I collagen was preserved from hydrolysis when a 10-fold ratio of cathepsin S cannibalized the highly collagenolytic cathepsin K, preventing its activity. Elastin was not preserved due to strong elastinolytic ability of both enzymes. Together, these results provide new insight into the combined proteolytic activities of cathepsins toward substrates and each other and present kinetic models to consider for more accurate predictions and descriptions of these systems.


Assuntos
Catepsina K/química , Catepsinas/química , Colágeno Tipo I/química , Modelos Químicos , Proteólise , Catepsina K/genética , Catepsina K/metabolismo , Catepsinas/genética , Catepsinas/metabolismo , Linhagem Celular , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Elastina/química , Elastina/genética , Elastina/metabolismo , Humanos , Hidrólise
13.
Cell Immunol ; 286(1-2): 45-52, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24321565

RESUMO

Crohn's disease is an autoimmune disorder that affects nearly 1.4 million Americans. The etiology of Crohn's disease is not completely understood, however, research has suggested a genetic link. There is currently no known cure for Crohn's disease and, as a result, most government-funded research is being conducted to increase the quality of life of afflicted patients (i.e. reducing chronic inflammation and alleviating growth impairment in pediatric patients). A number of treatment options are available including an alpha-4 integrin inhibitor and several TNF-alpha inhibitors. Furthermore, research is being conducted on several alternative treatment options to help understand exactly which cellular mechanisms (i.e. inducing apoptosis in leukocytes) are required for clinical efficacy. This review seeks to chronicle the current available treatment options for patients affected by Crohn's disease to aid in understanding potential cellular mechanistic requirements for an efficacious drug, and shed light on potential options for future treatment.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Doença de Crohn/tratamento farmacológico , Gerenciamento Clínico , Fármacos Gastrointestinais/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados/uso terapêutico , Doença de Crohn/imunologia , Doença de Crohn/metabolismo , Doença de Crohn/patologia , Citocinas/uso terapêutico , Humanos , Infliximab , Integrina alfa4/metabolismo , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 2/metabolismo , Ácidos Linoleicos Conjugados/uso terapêutico , Natalizumab , Cuidados Paliativos , Rifamicinas/uso terapêutico , Rifaximina , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo
14.
BME Front ; 4: 0006, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37849664

RESUMO

We need novel strategies to target the complexity of cancer and, particularly, of metastatic disease. As an example of this complexity, certain tissues are particularly hospitable environments for metastases, whereas others do not contain fertile microenvironments to support cancer cell growth. Continuing evidence that the extracellular matrix (ECM) of tissues is one of a host of factors necessary to support cancer cell growth at both primary and secondary tissue sites is emerging. Research on cancer metastasis has largely been focused on the molecular adaptations of tumor cells in various cytokine and growth factor environments on 2-dimensional tissue culture polystyrene plates. Intravital imaging, conversely, has transformed our ability to watch, in real time, tumor cell invasion, intravasation, extravasation, and growth. Because the interstitial ECM that supports all cells in the tumor microenvironment changes over time scales outside the possible window of typical intravital imaging, bioengineers are continuously developing both simple and sophisticated in vitro controlled environments to study tumor (and other) cell interactions with this matrix. In this perspective, we focus on the cellular unit responsible for upholding the pathologic homeostasis of tumor-bearing organs, cancer-associated fibroblasts (CAFs), and their self-generated ECM. The latter, together with tumoral and other cell secreted factors, constitute the "tumor matrisome". We share the challenges and opportunities for modeling this dynamic CAF/ECM unit, the tools and techniques available, and how the tumor matrisome is remodeled (e.g., via ECM proteases). We posit that increasing information on tumor matrisome dynamics may lead the field to alternative strategies for personalized medicine outside genomics.

15.
J Biomed Opt ; 28(9): 096501, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37692563

RESUMO

Significance: Although the molecular origins of sickle cell disease (SCD) have been extensively studied, the effects of SCD on the vasculature-which can influence blood clotting mechanisms, pain crises, and strokes-are not well understood. Improving this understanding can yield insight into the mechanisms and wide-ranging effects of this devastating disease. Aim: We aim to demonstrate the ability of a label-free 3D quantitative phase imaging technology, called quantitative oblique back-illumination microscopy (qOBM), to provide insight into the effects of SCD on brain vasculature. Approach: Using qOBM, we quantitatively analyze the vasculature of freshly excised, but otherwise unaltered, whole mouse brains. We use Townes sickle transgenic mice, which closely recapitulate the pathophysiology of human SCD, and sickle cell trait mice as controls. Two developmental time points are studied: 6-week-old mice and 20-week-old mice. Quantitative structural and biophysical parameters of the vessels (including the refractive index (RI), which is linearly proportional to dry mass) are extracted from the high-resolution images and analyzed. Results: qOBM reveals structural differences in the brain blood vessel thickness (thinner for SCD in particular brain regions) and the RI of the vessel wall (higher and containing a larger variation throughout the brain for SCD). These changes were only significant in 20-week-old mice. Further, vessel breakages are observed in SCD mice at both time points. The vessel wall RI distribution near these breaks, up to 350 µm away from the breaking point, shows an erratic behavior characterized by wide RI variations. Vessel diameter, tortuosity, texture within the vessel, and structural fractal patterns are found to not be statistically different. As with vessel breaks, we also observe blood vessel blockages only in mice brains with SCD. Conclusions: qOBM provides insight into the biophysical and structural composition of brain blood vessels in mice with SCD. Data suggest that the RI may be an indirect indicator of vessel rigidity, vessel strength, and/or tensions, which change with SCD. Future ex vivo and in vivo studies with qOBM could improve our understanding of SCD.


Assuntos
Anemia Falciforme , Encéfalo , Humanos , Camundongos , Animais , Encéfalo/diagnóstico por imagem , Anemia Falciforme/diagnóstico por imagem , Camundongos Transgênicos , Biofísica , Coagulação Sanguínea
16.
Tissue Eng Part C Methods ; 29(8): 361-370, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37409411

RESUMO

Cathepsins are a family of cysteine proteases responsible for a variety of homeostatic functions throughout the body, including extracellular matrix remodeling, and have been implicated in a variety of degenerative diseases. However, clinical trials using systemic administration of cathepsin inhibitors have been abandoned due to side effects, so local delivery of cathepsin inhibitors may be advantageous. In these experiments, a novel microfluidic device platform was developed that can synthesize uniform, hydrolytically degradable microparticles from a combination of poly(ethylene glycol) diacrylate (PEGDA) and dithiothreitol (DTT). Of the formulations examined, the 10-polymer weight percentage 10 mM DTT formulation degraded after 77 days in vitro. A modified assay using the DQ Gelatin Fluorogenic Substrate was used to demonstrate sustained release and bioactivity of a cathepsin inhibitor (E-64) released from hydrogel microparticles over 2 weeks in vitro (up to ∼13 µg/mL released with up to ∼40% original level of inhibition remaining at day 14). Altogether, the technologies developed in this study will allow a small-molecule, broad cathepsin inhibitor E-64 to be released in a sustained manner for localized inhibition of cathepsins for a wide variety of diseases.


Assuntos
Catepsinas , Microfluídica , Polietilenoglicóis/química , Polímeros
17.
iScience ; 26(10): 107980, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37868626

RESUMO

Cardiac-derived c-kit+ progenitor cells (CPCs) are under investigation in the CHILD phase I clinical trial (NCT03406884) for the treatment of hypoplastic left heart syndrome (HLHS). The therapeutic efficacy of CPCs can be attributed to the release of extracellular vesicles (EVs). To understand sources of cell therapy variability we took a machine learning approach: combining bulk CPC-derived EV (CPC-EV) RNA sequencing and cardiac-relevant in vitro experiments to build a predictive model. We isolated CPCs from cardiac biopsies of patients with congenital heart disease (n = 29) and the lead-in patients with HLHS in the CHILD trial (n = 5). We sequenced CPC-EVs, and measured EV inflammatory, fibrotic, angiogeneic, and migratory responses. Overall, CPC-EV RNAs involved in pro-reparative outcomes had a significant fit to cardiac development and signaling pathways. Using a model trained on previously collected CPC-EVs, we predicted in vitro outcomes for the CHILD clinical samples. Finally, CPC-EV angiogenic performance correlated to clinical improvements in right ventricle performance.

18.
Cell Syst ; 14(4): 252-257, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-37080161

RESUMO

Collective cell behavior contributes to all stages of cancer progression. Understanding how collective behavior emerges through cell-cell interactions and decision-making will advance our understanding of cancer biology and provide new therapeutic approaches. Here, we summarize an interdisciplinary discussion on multicellular behavior in cancer, draw lessons from other scientific disciplines, and identify future directions.


Assuntos
Comportamento de Massa , Neoplasias , Humanos , Comunicação
20.
Mol Cell Biochem ; 367(1-2): 65-72, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22562303

RESUMO

Inflammation and damage promote monocyte adhesion to endothelium and cardiovascular disease (CVD). Elevated inflammation and increased monocyte-endothelial cell interactions represent the initial stages of vascular remodeling associated with a multitude of CVDs. Cathepsins are proteases produced by both cell types that degrade elastin and collagen in arterial walls, and are upregulated in CVD. We hypothesized that the inflammatory cytokine tumor necrosis factor alpha (TNFα) and monocyte binding would stimulate cathepsins K and V expression and activity in endothelial cells that may be responsible for initiating local proteolysis during CVD. Confluent human aortic endothelial cells were stimulated with TNFα or THP-1 monocyte co-cultures, and multiplex cathepsin zymography was used to detect changes in levels of active cathepsins K, L, S, and V. Direct monocyte-endothelial cell co-cultures stimulated with TNFα generated maximally observed cathepsin K and V activities compared to either cell type alone (n = 3, p < 0.05) by a c-Jun N-terminal kinase (JNK)-dependent manner. Inhibition of JNK with SP6000125 blocked upregulation of cathepsin K activity by 49 % and cathepsin V by 81 % in endothelial cells. Together, these data show that inflammatory cues and monocyte-endothelial cell interactions upregulate cathepsin activity via JNK signaling axis and identify a new mechanism to target toward slowing the earliest stages of tissue remodeling in CVD.


Assuntos
Catepsina K/metabolismo , Catepsinas/metabolismo , Cisteína Endopeptidases/metabolismo , Células Endoteliais/enzimologia , MAP Quinase Quinase 4/metabolismo , Monócitos/fisiologia , Fator de Necrose Tumoral alfa/fisiologia , Antracenos/farmacologia , Adesão Celular , Comunicação Celular , Linhagem Celular , Técnicas de Cocultura , Ativação Enzimática , Humanos , MAP Quinase Quinase 4/antagonistas & inibidores , Sistema de Sinalização das MAP Quinases , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA