Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Proc Natl Acad Sci U S A ; 115(33): 8340-8345, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30061385

RESUMO

Elucidating the physiological roles and modes of action of the recently discovered ligands (designated ALKAL1,2 or AUG-α,ß) of the receptor tyrosine kinases Anaplastic Lymphoma Kinase (ALK) and Leukocyte Tyrosine Kinase (LTK) has been limited by difficulties in producing sufficient amounts of the two ligands and their poor stability. Here we describe procedures for expression and purification of AUG-α and a deletion mutant lacking the N-terminal variable region. Detailed biochemical characterization of AUG-α by mass spectrometry shows that the four conserved cysteines located in the augmentor domain (AD) form two intramolecular disulfide bridges while a fifth, primate-specific cysteine located in the N-terminal variable region mediates dimerization through formation of a disulfide bridge between two AUG-α molecules. In contrast to AUG-α, the capacity of AUG-α AD to undergo dimerization is strongly compromised. However, full-length AUG-α and the AUG-α AD deletion mutant stimulate similar tyrosine phosphorylation of cells expressing either ALK or LTK. Both AUG-α and AUG-α AD also stimulate a similar profile of MAP kinase response in L6 cells and colony formation in soft agar by autocrine stimulation of NIH 3T3 cells expressing ALK. Moreover, both AUG-α and AUG-α AD stimulate neuronal differentiation of human neuroblastoma NB1 and PC12 cells in a similar dose-dependent manner. Taken together, these experiments show that deletion of the N-terminal variable region minimally affects the activity of AUG-α toward LTK or ALK stimulation in cultured cells. Reduced dimerization might be compensated by high local concentration of AUG-α AD bound to ALK at the cell membrane and by potential ligand-induced receptor-receptor interactions.


Assuntos
Citocinas/isolamento & purificação , Receptores Proteína Tirosina Quinases/isolamento & purificação , Motivos de Aminoácidos , Quinase do Linfoma Anaplásico , Animais , Citocinas/química , Citocinas/fisiologia , Células HEK293 , Humanos , Camundongos , Células NIH 3T3 , Células PC12 , Multimerização Proteica , Ratos , Receptores Proteína Tirosina Quinases/química , Receptores Proteína Tirosina Quinases/metabolismo
2.
Proc Natl Acad Sci U S A ; 114(11): 2952-2957, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28265070

RESUMO

T-helper 17 (Th17) cells have important functions in adaptor immunity and have also been implicated in inflammatory disorders. The bromodomain and extraterminal domain (BET) family proteins regulate gene transcription during lineage-specific differentiation of naïve CD4+ T cells to produce mature T-helper cells. Inhibition of acetyl-lysine binding of the BET proteins by pan-BET bromodomain (BrD) inhibitors, such as JQ1, broadly affects differentiation of Th17, Th1, and Th2 cells that have distinct immune functions, thus limiting their therapeutic potential. Whether these BET proteins represent viable new epigenetic drug targets for inflammatory disorders has remained an unanswered question. In this study, we report that selective inhibition of the first bromodomain of BET proteins with our newly designed small molecule MS402 inhibits primarily Th17 cell differentiation with a little or almost no effect on Th1 or Th2 and Treg cells. MS402 preferentially renders Brd4 binding to Th17 signature gene loci over those of housekeeping genes and reduces Brd4 recruitment of p-TEFb to phosphorylate and activate RNA polymerase II for transcription elongation. We further show that MS402 prevents and ameliorates T-cell transfer-induced colitis in mice by blocking Th17 cell overdevelopment. Thus, selective pharmacological modulation of individual bromodomains likely represents a strategy for treatment of inflammatory bowel diseases.


Assuntos
Diferenciação Celular , Colite/etiologia , Colite/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteínas/química , Proteínas/metabolismo , Células Th17/citologia , Células Th17/metabolismo , Animais , Colite/patologia , Biologia Computacional/métodos , Modelos Animais de Doenças , Humanos , Ligantes , Espectroscopia de Ressonância Magnética/métodos , Camundongos , Camundongos Knockout , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Células Th17/imunologia
3.
Nature ; 466(7303): 258-62, 2010 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-20613843

RESUMO

Histone lysine acetylation and methylation have an important role during gene transcription in a chromatin context. Knowledge concerning the types of protein modules that can interact with acetyl-lysine has so far been limited to bromodomains. Recently, a tandem plant homeodomain (PHD) finger (PHD1-PHD2, or PHD12) of human DPF3b, which functions in association with the BAF chromatin remodelling complex to initiate gene transcription during heart and muscle development, was reported to bind histones H3 and H4 in an acetylation-sensitive manner, making it the first alternative to bromodomains for acetyl-lysine binding. Here we report the structural mechanism of acetylated histone binding by the double PHD fingers of DPF3b. Our three-dimensional solution structures and biochemical analysis of DPF3b highlight the molecular basis of the integrated tandem PHD finger, which acts as one functional unit in the sequence-specific recognition of lysine-14-acetylated histone H3 (H3K14ac). Whereas the interaction with H3 is promoted by acetylation at lysine 14, it is inhibited by methylation at lysine 4, and these opposing influences are important during transcriptional activation of the mouse DPF3b target genes Pitx2 and Jmjd1c. Binding of this tandem protein module to chromatin can thus be regulated by different histone modifications during the initiation of gene transcription.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Histonas/química , Histonas/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Dedos de Zinco , Acetilação , Animais , Linhagem Celular , Proteínas de Ligação a DNA/genética , Humanos , Lisina/química , Lisina/metabolismo , Camundongos , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Dobramento de Proteína , Relação Estrutura-Atividade , Especificidade por Substrato , Termodinâmica , Fatores de Transcrição/genética , Transcrição Gênica , Ativação Transcricional , Regulação para Cima
4.
Proc Natl Acad Sci U S A ; 109(23): 8925-30, 2012 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-22615379

RESUMO

Histone acetyltransferase 1 is the founding member of the histone acetyltransferase superfamily and catalyzes lysine acetylation of newly synthesized histone H4. Here we report a 1.9-Šresolution crystal structure of human histone acetyltransferase 1 in complex with acetyl coenzyme A and histone H4 peptide. The crystal structure reveals that the cofactor and the side chain of lysine 12 of histone H4 peptide are placed in the canyon between the central and C-terminal domains. Histone H4 peptide adopts a well-defined conformation and establishes an extensive set of interactions with the enzyme including invariant residues Glu64 and Trp199, which together govern substrate-binding specificity of histone acetyltransferase 1. Our structure-guided enzyme kinetic study further demonstrates a cumulative effect of the active-site residues Glu187, Glu276, and Asp277 on deprotonation of the ε-amino group of reactive Lys12 for direct attack of the acetyl group of the cofactor.


Assuntos
Histona Acetiltransferases/química , Modelos Moleculares , Conformação Proteica , Catálise , Clonagem Molecular , Cristalografia , Humanos , Especificidade por Substrato , Difração de Raios X
5.
J Biol Chem ; 287(34): 28840-51, 2012 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-22645123

RESUMO

NF-κB-mediated inflammation is the major pathology in chronic kidney diseases, including HIV-associated nephropathy (HIVAN) that ultimately progresses to end stage renal disease. HIV infection in the kidney induces NF-κB activation, leading to the production of proinflammatory chemokines, cytokines, and adhesion molecules. In this study, we explored selective inhibition of NF-κB transcriptional activity by small molecule blocking NF-κB binding to the transcriptional cofactor BRD4, which is required for the assembly of the productive transcriptional complex comprising positive transcription elongation factor b and RNA polymerase II. We showed that our BET (Bromodomain and Extra-Terminal domain)-specific bromodomain inhibitor MS417, designed to block BRD4 binding to the acetylated NF-κB, effectively attenuates NF-κB transcriptional activation of proinflammatory genes in kidney cells treated with TNFα or infected by HIV. MS417 ameliorates inflammation and kidney injury in HIV-1 transgenic mice, an animal model for HIVAN. Our study suggests that BET bromodomain inhibition, targeting at the proinflammatory activity of NF-κB, represents a new therapeutic approach for treating NF-κB-mediated inflammation and kidney injury in HIVAN.


Assuntos
Nefropatia Associada a AIDS/metabolismo , HIV-1/metabolismo , NF-kappa B/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Nefropatia Associada a AIDS/genética , Nefropatia Associada a AIDS/patologia , Acilação , Animais , Proteínas de Ciclo Celular , Células Cultivadas , Modelos Animais de Doenças , HIV-1/genética , Humanos , Camundongos , Camundongos Transgênicos , NF-kappa B/genética , Proteínas Nucleares/genética , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Fatores de Transcrição/genética
6.
Plant Physiol ; 158(4): 1728-44, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22345506

RESUMO

5'-Methylthioadenosine (MTA) is the common by-product of polyamine (PA), nicotianamine (NA), and ethylene biosynthesis in Arabidopsis (Arabidopsis thaliana). The methylthiol moiety of MTA is salvaged by 5'-methylthioadenosine nucleosidase (MTN) in a reaction producing methylthioribose (MTR) and adenine. The MTN double mutant, mtn1-1mtn2-1, retains approximately 14% of the MTN enzyme activity present in the wild type and displays a pleiotropic phenotype that includes altered vasculature and impaired fertility. These abnormal traits were associated with increased MTA levels, altered PA profiles, and reduced NA content. Exogenous feeding of PAs partially recovered fertility, whereas NA supplementation improved fertility and also reversed interveinal chlorosis. The analysis of PA synthase crystal structures containing bound MTA suggests that the corresponding enzyme activities are sensitive to available MTA. Mutant plants that expressed either MTN or human methylthioadenosine phosphorylase (which metabolizes MTA without producing MTR) appeared wild type, proving that the abnormal traits of the mutant are due to MTA accumulation rather than reduced MTR. Based on our results, we propose that the key targets affected by increased MTA content are thermospermine synthase activity and spermidine-dependent posttranslational modification of eukaryotic initiation factor 5A.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Desoxiadenosinas/metabolismo , Feixe Vascular de Plantas/crescimento & desenvolvimento , Feixe Vascular de Plantas/metabolismo , Tionucleosídeos/metabolismo , Arabidopsis/genética , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácido Azetidinocarboxílico/análogos & derivados , Ácido Azetidinocarboxílico/metabolismo , Ácido Azetidinocarboxílico/farmacologia , Vias Biossintéticas/efeitos dos fármacos , Desoxiadenosinas/química , Eletroforese em Gel Bidimensional , Fertilidade/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Teste de Complementação Genética , Modelos Biológicos , Modelos Moleculares , Mutação/genética , Fenótipo , Feixe Vascular de Plantas/efeitos dos fármacos , Pólen/efeitos dos fármacos , Pólen/crescimento & desenvolvimento , Pólen/ultraestrutura , Poliaminas/metabolismo , Poliaminas/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodução/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Tioglicosídeos/metabolismo , Tionucleosídeos/química
7.
PLoS Biol ; 7(2): e43, 2009 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-19243223

RESUMO

Heme is a ligand for the human nuclear receptors (NR) REV-ERBalpha and REV-ERBbeta, which are transcriptional repressors that play important roles in circadian rhythm, lipid and glucose metabolism, and diseases such as diabetes, atherosclerosis, inflammation, and cancer. Here we show that transcription repression mediated by heme-bound REV-ERBs is reversed by the addition of nitric oxide (NO), and that the heme and NO effects are mediated by the C-terminal ligand-binding domain (LBD). A 1.9 A crystal structure of the REV-ERBbeta LBD, in complex with the oxidized Fe(III) form of heme, shows that heme binds in a prototypical NR ligand-binding pocket, where the heme iron is coordinately bound by histidine 568 and cysteine 384. Under reducing conditions, spectroscopic studies of the heme-REV-ERBbeta complex reveal that the Fe(II) form of the LBD transitions between penta-coordinated and hexa-coordinated structural states, neither of which possess the Cys384 bond observed in the oxidized state. In addition, the Fe(II) LBD is also able to bind either NO or CO, revealing a total of at least six structural states of the protein. The binding of known co-repressors is shown to be highly dependent upon these various liganded states. REV-ERBs are thus highly dynamic receptors that are responsive not only to heme, but also to redox and gas. Taken together, these findings suggest new mechanisms for the systemic coordination of molecular clocks and metabolism. They also raise the possibility for gas-based therapies for the many disorders associated with REV-ERB biological functions.


Assuntos
Heme/metabolismo , Óxido Nítrico/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , Ritmo Circadiano , Proteínas de Ligação a DNA , Humanos , Ligantes , Óxido Nítrico/farmacologia , Oxirredução , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Receptores Citoplasmáticos e Nucleares/química , Proteínas Repressoras/química , Transcrição Gênica/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos
8.
Proc Natl Acad Sci U S A ; 106(1): 262-7, 2009 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-19116277

RESUMO

In a search for more effective anti-diabetic treatment, we used a process coupling low-affinity biochemical screening with high-throughput co-crystallography in the design of a series of compounds that selectively modulate the activities of all three peroxisome proliferator-activated receptors (PPARs), PPARalpha, PPARgamma, and PPARdelta. Transcriptional transactivation assays were used to select compounds from this chemical series with a bias toward partial agonism toward PPARgamma, to circumvent the clinically observed side effects of full PPARgamma agonists. Co-crystallographic characterization of the lead molecule, indeglitazar, in complex with each of the 3 PPARs revealed the structural basis for its PPAR pan-activity and its partial agonistic response toward PPARgamma. Compared with full PPARgamma-agonists, indeglitazar is less potent in promoting adipocyte differentiation and only partially effective in stimulating adiponectin gene expression. Evaluation of the compound in vivo confirmed the reduced adiponectin response in animal models of obesity and diabetes while revealing strong beneficial effects on glucose, triglycerides, cholesterol, body weight, and other metabolic parameters. Indeglitazar has now progressed to Phase II clinical evaluations for Type 2 diabetes mellitus (T2DM).


Assuntos
Descoberta de Drogas/métodos , Hipoglicemiantes/uso terapêutico , PPAR gama/agonistas , Receptores Ativados por Proliferador de Peroxissomo/agonistas , Adipócitos/citologia , Adiponectina/genética , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Diabetes Mellitus Experimental/tratamento farmacológico , Humanos , Hipoglicemiantes/farmacologia , Camundongos , Obesidade/tratamento farmacológico , PPAR gama/genética , Receptores Ativados por Proliferador de Peroxissomo/genética , Ratos , Ativação Transcricional/efeitos dos fármacos
9.
J Am Chem Soc ; 133(7): 2040-3, 2011 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-21271695

RESUMO

The CREB binding protein (CBP) is a human transcriptional coactivator consisting of several conserved functional modules, which interacts with distinct transcription factors including nuclear receptors, CREB, and STAT proteins. Despite the importance of CBP in transcriptional regulation, many questions regarding the role of its particular domains in CBP functions remain unanswered. Therefore, developing small molecules capable of selectively modulating a single domain of CBP is of invaluable aid at unraveling its prominent activities. Here we report the design, synthesis, and biological evaluation of conformationally restricted peptides as novel modulators for the acetyl-lysine binding bromodomain (BRD) of CBP. Utilizing a target structure-guided and computer-aided rational design approach, we developed a series of cyclic peptides with affinity for CBP BRD significantly greater than those of its biological ligands, including lysine-acetylated histones and tumor suppressor p53. The best cyclopeptide of the series exhibited a K(d) of 8.0 µM, representing a 24-fold improvement in affinity over that of the linear lysine 382-acetylated p53 peptide. This lead peptide is highly selective for CBP BRD over BRDs from other transcriptional proteins. Cell-based functional assays carried out in colorectal carcinoma HCT116 cells further demonstrated the efficacy of this compound to modulate p53 stability and function in response to DNA damage. Our results strongly argue that these CBP modulators can effectively inhibit p53 transcriptional activity by blocking p53K382ac binding to CBP BRD and promoting p53 instability by changes of its post-translational modification states, a different mechanism than that of the p53 inhibitors reported to date.


Assuntos
Proteína de Ligação a CREB/efeitos dos fármacos , Desenho de Fármacos , Peptídeos Cíclicos/síntese química , Proteína Supressora de Tumor p53/antagonistas & inibidores , Linhagem Celular Tumoral , Humanos , Concentração Inibidora 50 , Modelos Moleculares , Estrutura Molecular , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Relação Estrutura-Atividade
10.
PLoS Biol ; 5(5): e97, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17425406

RESUMO

The human cytosolic sulfotransfases (hSULTs) comprise a family of 12 phase II enzymes involved in the metabolism of drugs and hormones, the bioactivation of carcinogens, and the detoxification of xenobiotics. Knowledge of the structural and mechanistic basis of substrate specificity and activity is crucial for understanding steroid and hormone metabolism, drug sensitivity, pharmacogenomics, and response to environmental toxins. We have determined the crystal structures of five hSULTs for which structural information was lacking, and screened nine of the 12 hSULTs for binding and activity toward a panel of potential substrates and inhibitors, revealing unique "chemical fingerprints" for each protein. The family-wide analysis of the screening and structural data provides a comprehensive, high-level view of the determinants of substrate binding, the mechanisms of inhibition by substrates and environmental toxins, and the functions of the orphan family members SULT1C3 and SULT4A1. Evidence is provided for structural "priming" of the enzyme active site by cofactor binding, which influences the spectrum of small molecules that can bind to each enzyme. The data help explain substrate promiscuity in this family and, at the same time, reveal new similarities between hSULT family members that were previously unrecognized by sequence or structure comparison alone.


Assuntos
Citosol/enzimologia , Sulfotransferases/química , Difosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Cristalização , Estabilidade Enzimática , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Fosfoadenosina Fosfossulfato/química , Ligação Proteica , Alinhamento de Sequência , Sulfotransferases/antagonistas & inibidores , Sulfotransferases/genética , Sulfotransferases/metabolismo
11.
Biochem J ; 415(2): 217-23, 2008 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-18601654

RESUMO

Aspergillus fumigatus is the causative agent of aspergillosis, a frequently invasive colonization of the lungs of immunocompromised patients. GNA1 (D-glucosamine-6-phosphate N-acetyltransferase) catalyses the acetylation of GlcN-6P (glucosamine-6-phosphate) to GlcNAc-6P (N-acetylglucosamine-6-phosphate), a key intermediate in the UDP-GlcNAc biosynthetic pathway. Gene disruption of gna1 in yeast and Candida albicans has provided genetic validation of the enzyme as a potential target. An understanding of potential active site differences between the human and A. fumigatus enzymes is required to enable further work aimed at identifying selective inhibitors for the fungal enzyme. In the present study, we describe crystal structures of both human and A. fumigatus GNA1, as well as their kinetic characterization. The structures show significant differences in the sugar-binding site with, in particular, several non-conservative substitutions near the phosphate-binding pocket. Mutagenesis targeting these differences revealed drastic effects on steady-state kinetics, suggesting that the differences could be exploitable with small-molecule inhibitors.


Assuntos
Aspergillus fumigatus/enzimologia , Proteínas Fúngicas/metabolismo , Glucosamina 6-Fosfato N-Acetiltransferase/metabolismo , Sequência de Aminoácidos , Aspergillus fumigatus/genética , Sítios de Ligação/genética , Cristalografia por Raios X , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Glucosamina 6-Fosfato N-Acetiltransferase/química , Glucosamina 6-Fosfato N-Acetiltransferase/genética , Humanos , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
12.
Structure ; 15(3): 377-89, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17355872

RESUMO

Sirtuins are NAD(+)-dependent protein deacetylases and are emerging as molecular targets for the development of pharmaceuticals to treat human metabolic and neurological diseases and cancer. To date, several sirtuin inhibitors and activators have been identified, but the structural mechanisms of how these compounds modulate sirtuin activity have not yet been determined. We identified suramin as a compound that binds to human SIRT5 and showed that it inhibits SIRT5 NAD(+)-dependent deacetylase activity with an IC(50) value of 22 microM. To provide insights into how sirtuin function is altered by inhibitors, we determined two crystal structures of SIRT5, one in complex with ADP-ribose, the other bound to suramin. Our structural studies provide a view of a synthetic inhibitory compound in a sirtuin active site revealing that suramin binds into the NAD(+), the product, and the substrate-binding site. Finally, our structures may enable the rational design of more potent inhibitors.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , NAD/fisiologia , Sirtuínas/antagonistas & inibidores , Sirtuínas/química , Suramina/química , Suramina/farmacologia , Sequência de Aminoácidos , Sítios de Ligação/efeitos dos fármacos , Cristalografia por Raios X , Inibidores Enzimáticos/metabolismo , Humanos , Dados de Sequência Molecular , NAD/química , Ligação Proteica/fisiologia , Sirtuínas/metabolismo , Relação Estrutura-Atividade , Suramina/metabolismo
13.
Bioinformatics ; 23(2): e104-9, 2007 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-17237076

RESUMO

MOTIVATION: In the present work we combine computational analysis and experimental data to explore the extent to which binding site similarities between members of the human cytosolic sulfotransferase family correlate with small-molecule binding profiles. Conversely, from a small-molecule point of view, we explore the extent to which structural similarities between small molecules correlate to protein binding profiles. RESULTS: The comparison of binding site structural similarities and small-molecule binding profiles shows that proteins with similar small-molecule binding profiles tend to have a higher degree of binding site similarity but the latter is not sufficient to predict small-molecule binding patterns, highlighting the difficulty of predicting small-molecule binding patterns from sequence or structure. Likewise, from a small-molecule perspective, small molecules with similar protein binding profiles tend to be topologically similar but topological similarity is not sufficient to predict their protein binding patterns. These observations have important consequences for function prediction and drug design.


Assuntos
Algoritmos , Modelos Químicos , Modelos Moleculares , Alinhamento de Sequência/métodos , Análise de Sequência de Proteína/métodos , Sulfotransferases/química , Sítios de Ligação , Simulação por Computador , Humanos , Ligação Proteica , Homologia de Sequência de Aminoácidos
14.
Proteins ; 67(1): 198-208, 2007 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-17243178

RESUMO

Human thiopurine S-methyltransferase (TPMT) exhibits considerable person-to-person variation in activity to thiopurine drugs. We have produced an N-terminal truncation of human TPMT protein, crystallized the protein in complex with the methyl donor product S-adenosyl-L-homocysteine, and determined the atomic structure to the resolution of 1.58 and 1.89 A, respectively, for the seleno-methionine incorporated and wild type proteins. The structure of TPMT indicates that the naturally occurring amino acid polymorphisms scatter throughout the structure, and that the amino acids whose alteration have the most influence on function are those that form intra-molecular stabilizing interactions (mainly van der Waals contacts). Furthermore, we have produced four TPMT mutant proteins containing variant alleles of TPMT*2, *3A, *3B, and *3C and examined the structure-function relationship of the mutant proteins based on their expression and solubility in bacteria and their thermostability profile.


Assuntos
Alelos , Metiltransferases/química , Metiltransferases/genética , Sequência de Aminoácidos , Sítios de Ligação , Cristalização , Cristalografia por Raios X , Análise Mutacional de DNA , Humanos , Metiltransferases/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutação Puntual , Polimorfismo Genético , S-Adenosil-Homocisteína/metabolismo
15.
Mol Cell Biol ; 22(20): 7184-92, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12242295

RESUMO

Sucrose octasulfate (SOS) is believed to stimulate fibroblast growth factor (FGF) signaling by binding and stabilizing FGFs. In this report, we show that SOS induces FGF-dependent dimerization of FGF receptors (FGFRs). The crystal structure of the dimeric FGF2-FGFR1-SOS complex at 2.6-A resolution reveals a symmetric assemblage of two 1:1:1 FGF2-FGFR1-SOS ternary complexes. Within each ternary complex SOS binds to FGF and FGFR and thereby increases FGF-FGFR affinity. SOS also interacts with the adjoining FGFR and thereby promotes protein-protein interactions that stabilize dimerization. This structural finding is supported by the inability of selectively desulfated SOS molecules to promote receptor dimerization. Thus, we propose that SOS potentiates FGF signaling by imitating the dual role of heparin in increasing FGF-FGFR affinity and promoting receptor dimerization. Hence, the dimeric FGF-FGFR-SOS structure substantiates the recently proposed "two-end" model, by which heparin induces FGF-FGFR dimerization. Moreover, the FGF-FGFR-SOS structure provides an attractive template for the development of easily synthesized SOS-related heparin agonists and antagonists that may hold therapeutic potential.


Assuntos
Fator 2 de Crescimento de Fibroblastos/química , Receptores Proteína Tirosina Quinases/química , Receptores de Fatores de Crescimento de Fibroblastos/química , Transdução de Sinais , Sacarose/análogos & derivados , Sacarose/química , Animais , Cristalografia por Raios X , Dimerização , Heparina/metabolismo , Camundongos , Modelos Moleculares , Estrutura Terciária de Proteína , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos
16.
Chem Biol ; 22(2): 161-8, 2015 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-25660273

RESUMO

Chromobox homolog 7 (CBX7) plays an important role in gene transcription in a wide array of cellular processes, ranging from stem cell self-renewal and differentiation to tumor progression. CBX7 functions through its N-terminal chromodomain (ChD), which recognizes trimethylated lysine 27 of histone 3 (H3K27me3), a conserved epigenetic mark that signifies gene transcriptional repression. In this study, we report the discovery of small molecules that inhibit CBX7ChD binding to H3K27me3. Our crystal structures reveal the binding modes of these molecules that compete against H3K27me3 binding through interactions with key residues in the methyl-lysine binding pocket of CBX7ChD. We further show that a lead compound, MS37452, derepresses transcription of Polycomb repressive complex target gene p16/CDKN2A by displacing CBX7 binding to the INK4A/ARF locus in prostate cancer cells. These small molecules have the potential to be developed into high-potency chemical modulators that target CBX7 functions in gene transcription in different disease pathways.


Assuntos
Complexo Repressor Polycomb 1/química , Bibliotecas de Moléculas Pequenas/química , Sítios de Ligação , Linhagem Celular Tumoral , Inibidor p16 de Quinase Dependente de Ciclina/química , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Fluoresceína-5-Isotiocianato/química , Histonas/química , Histonas/metabolismo , Humanos , Lisina/química , Lisina/metabolismo , Metilação , Complexo Repressor Polycomb 1/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Bibliotecas de Moléculas Pequenas/metabolismo , Eletricidade Estática , Suramina/química , Suramina/metabolismo
19.
Structure ; 22(2): 353-60, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24361270

RESUMO

Bromodomain functions as the acetyl-lysine binding domains to regulate gene transcription in chromatin. Bromodomains are rapidly emerging as new epigenetic drug targets for human diseases. However, owing to their transient nature and modest affinity, histone-binding selectivity of bromodomains has remained mostly elusive. Here, we report high-resolution crystal structures of the bromodomain-PHD tandem module of human transcriptional coactivator CBP bound to lysine-acetylated histone H4 peptides. The structures reveal that the PHD finger serves a structural role in the tandem module and that the bromodomain prefers lysine-acetylated motifs comprising a hydrophobic or aromatic residue at -2 and a lysine or arginine at -3 or -4 position from the acetylated lysine. Our study further provides structural insights into distinct modes of singly and diacetylated histone H4 recognition by the bromodomains of CBP and BRD4 that function differently as a transcriptional coactivator and chromatin organizer, respectively, explaining their distinct roles in control of gene expression in chromatin.


Assuntos
Histonas/química , Fragmentos de Peptídeos/química , Sialoglicoproteínas/química , Motivos de Aminoácidos , Arginina/química , Sítios de Ligação , Cromatina/química , Cristalografia por Raios X , Humanos , Lisina/química , Modelos Moleculares , Ligação Proteica , Estrutura Terciária de Proteína , Ativação Transcricional
20.
Chem Biol ; 21(7): 841-854, 2014 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-24954007

RESUMO

Lysine acetylation regulates gene expression through modulating protein-protein interactions in chromatin. Chemical inhibition of acetyl-lysine binding bromodomains of the major chromatin regulators BET (bromodomain and extraterminal domain) proteins has been shown to effectively block cell proliferation in cancer and inflammation. However, whether selective inhibition of individual BET bromodomains has distinctive functional consequences remains only partially understood. In this study, we show that selective chemical inhibition of the first bromodomain of BET proteins using our small-molecule inhibitor, Olinone, accelerated the progression of mouse primary oligodendrocyte progenitors toward differentiation, whereas inhibition of both bromodomains of BET proteins hindered differentiation. This effect was target specific, as it was not detected in cells treated with inactive analogs and independent of any effect on proliferation. Therefore, selective chemical modulation of individual bromodomains, rather than use of broad-based inhibitors, may enhance regenerative strategies in disorders characterized by myelin loss such as aging and neurodegeneration.


Assuntos
Oligodendroglia/citologia , Oligodendroglia/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Transcrição Gênica/efeitos dos fármacos , Acetilação/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Humanos , Lisina/metabolismo , Camundongos , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Bibliotecas de Moléculas Pequenas/metabolismo , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Especificidade por Substrato , Fatores de Transcrição/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA