Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Drug Target ; 30(4): 368-380, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34761711

RESUMO

Achieving a novel drug delivery system needs site-specificity along with dosage control. Many physical, chemical, mechanical, and biological signals are used for developing these systems, out of which light has been used predominantly in the past decade. Light responsive drug delivery systems have tremendous potential, and their exploration is crucial in developing a precise and controlled delivery system. Spatio-temporal and intensity control of light allows better manipulation of drug delivery vehicles than mechanical, chemical, and biological signals. The use of ultraviolet (UV) and near-infrared (NIR) light has helped in upgrading therapeutic functionalities, while the use of up-conversion nanoparticles (UCNPs) has delivered an extension into theranostic tools. Biomaterials incorporated with photosensitizers can readily respond to changes in light and are vital in achieving clinical success via translational research. Further, the inclusion of biological macromolecules for the transportation of drugs, genes, and proteins has seen a broader application of light-controlled systems. The key objective of this review paper is to summarise the evolution of light-activated targeted drug delivery systems and the importance of biomaterials in developing one.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas , Materiais Biocompatíveis , Raios Infravermelhos , Nanopartículas/química , Preparações Farmacêuticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA