Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 128(4): 047701, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35148146

RESUMO

We demonstrate microwave-mediated distant magnon-magnon coupling on a superconducting circuit platform, incorporating chip-mounted single-crystal Y_{3}Fe_{5}O_{12} (YIG) spheres. Coherent level repulsion and dissipative level attraction between the magnon modes of the two YIG spheres are demonstrated. The former is mediated by cavity photons of a superconducting resonator, and the latter is mediated by propagating photons of a coplanar waveguide. Our results open new avenues toward exploring integrated hybrid magnonic networks for coherent information processing on a quantum-compatible superconducting platform.

2.
Phys Rev Lett ; 123(10): 107701, 2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31573284

RESUMO

We demonstrate strong magnon-photon coupling of a thin-film Permalloy device fabricated on a coplanar superconducting resonator. A coupling strength of 0.152 GHz and a cooperativity of 68 are found for a 30-nm-thick Permalloy stripe. The coupling strength is tunable by rotating the biasing magnetic field or changing the volume of Permalloy. We also observe an enhancement of magnon-photon coupling in the nonlinear regime of the superconducting resonator, which is attributed to the nucleation of dynamic flux vortices. Our results demonstrate a critical step towards future integrated hybrid systems for quantum magnonics and on-chip coherent information transfer.

3.
Sci Rep ; 13(1): 6315, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37072413

RESUMO

Titanium nitride is a material of interest for many superconducting devices such as nanowire microwave resonators and photon detectors. Thus, controlling the growth of TiN thin films with desirable properties is of high importance. This work aims to explore effects in ion beam-assisted sputtering (IBAS), were an observed increase in nominal critical temperature and upper critical fields are in tandem with previous work on Niobium nitride (NbN). We grow thin films of titanium nitride by both, the conventional method of DC reactive magnetron sputtering and the IBAS method, to compare their superconducting critical temperatures [Formula: see text] as functions of thickness, sheet resistance, and nitrogen flow rate. We perform electrical and structural characterizations by electric transport and x-ray diffraction measurements. Compared to the conventional method of reactive sputtering, the IBAS technique has demonstrated a 10% increase in nominal critical temperature without noticeable variation in the lattice structure. Additionally, we explore the behavior of superconducting [Formula: see text] in ultra-thin films. Trends in films grown at high nitrogen concentrations follow predictions of mean-field theory in disordered films and show suppression of superconducting [Formula: see text] due to geometric effects, while nitride films grown at low nitrogen concentrations strongly deviate from the theoretical models.

4.
Nanomaterials (Basel) ; 10(6)2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32575402

RESUMO

Superconducting nanowire single photon detectors are becoming a dominant technology in quantum optics and quantum communication, primarily because of their low timing jitter and capability to detect individual low-energy photons with high quantum efficiencies. However, other desirable characteristics, such as high detection rates, operation in cryogenic and high magnetic field environments, or high-efficiency detection of charged particles, are underrepresented in literature, potentially leading to a lack of interest in other fields that might benefit from this technology. We review the progress in use of superconducting nanowire technology in photon and particle detection outside of the usual areas of physics, with emphasis on the potential use in ongoing and future experiments in nuclear and high energy physics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA