Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Proc Biol Sci ; 289(1980): 20220878, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35946148

RESUMO

Life underground often leads to animals having specialized auditory systems to accommodate the constraints of acoustic transmission in tunnels. Despite living underground, naked mole-rats use a highly vocal communication system, implying that they rely on central auditory processing. However, little is known about these animals' central auditory system, and whether it follows a similar developmental time course as other rodents. Naked mole-rats show slowed development in the hippocampus suggesting they have altered brain development compared to other rodents. Here, we measured morphological characteristics and voltage-gated potassium channel Kv3.3 expression and protein levels at different key developmental time points (postnatal days 9, 14, 21 and adulthood) to determine whether the auditory brainstem (lateral superior olive and medial nucleus of the trapezoid body) develops similarly to two common auditory rodent model species: gerbils and mice. Additionally, we measured the hearing onset of naked mole-rats using auditory brainstem response recordings at the same developmental timepoints. In contrast with other work in naked mole-rats showing that they are highly divergent in many aspects of their physiology, we show that naked mole-rats have a similar hearing onset, between postnatal day (P) 9 and P14, to many other rodents. On the other hand, we show some developmental differences, such as a unique morphology and Kv3.3 protein levels in the brainstem.


Assuntos
Tronco Encefálico , Ratos-Toupeira , Animais , Percepção Auditiva/fisiologia , Tronco Encefálico/anatomia & histologia , Gerbillinae , Hipocampo , Camundongos , Ratos-Toupeira/fisiologia
2.
J Vis Exp ; (185)2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35938838

RESUMO

Coherent anti-Stokes Raman spectroscopy (CARS) is a technique classically employed by chemists and physicists to produce a coherent signal of signature vibrations of molecules. However, these vibrational signatures are also characteristic of molecules within anatomical tissue such as the brain, making it increasingly useful and applicable for Neuroscience applications. For example, CARS can measure lipids by specifically exciting chemical bonds within these molecules, allowing for quantification of different aspects of tissue, such as myelin involved in neurotransmission. In addition, compared to other techniques typically used to quantify myelin, CARS can also be set up to be compatible with immunofluorescent techniques, allowing for co-labeling with other markers such as sodium channels or other components of synaptic transmission. Myelination changes are an inherently important mechanism in demyelinating diseases such as multiple sclerosis or other neurological conditions such as Fragile X Syndrome or autism spectrum disorders is an emerging area of research. In conclusion, CARS can be utilized in innovative ways to answer pressing questions in Neuroscience and provide evidence for underlying mechanisms related to many different neurological conditions.


Assuntos
Microscopia , Análise Espectral Raman , Encéfalo , Microscopia/métodos , Bainha de Mielina , Análise Espectral Raman/métodos , Vibração
3.
Front Neurosci ; 15: 772943, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858133

RESUMO

Auditory symptoms are one of the most frequent sensory issues described in people with Fragile X Syndrome (FXS), the most common genetic form of intellectual disability. However, the mechanisms that lead to these symptoms are under explored. In this study, we examined whether there are defects in myelination in the auditory brainstem circuitry. Specifically, we studied myelinated fibers that terminate in the Calyx of Held, which encode temporally precise sound arrival time, and are some of the most heavily myelinated axons in the brain. We measured anatomical myelination characteristics using coherent anti-stokes Raman spectroscopy (CARS) and electron microscopy (EM) in a FXS mouse model in the medial nucleus of the trapezoid body (MNTB) where the Calyx of Held synapses. We measured number of mature oligodendrocytes (OL) and oligodendrocyte precursor cells (OPCs) to determine if changes in myelination were due to changes in the number of myelinating or immature glial cells. The two microscopy techniques (EM and CARS) showed a decrease in fiber diameter in FXS mice. Additionally, EM results indicated reductions in myelin thickness and axon diameter, and an increase in g-ratio, a measure of structural and functional myelination. Lastly, we showed an increase in both OL and OPCs in MNTB sections of FXS mice suggesting that the myelination phenotype is not due to an overall decrease in number of myelinating OLs. This is the first study to show that a myelination defects in the auditory brainstem that may underly auditory phenotypes in FXS.

4.
Transl Psychiatry ; 11(1): 524, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645786

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental disease with a wide spectrum of manifestation. The core symptoms of ASD are persistent deficits in social communication, and restricted and repetitive patterns of behavior, interests, or activities. These are often accompanied by intellectual disabilities. At present, there is no designated effective treatment for the core symptoms and co-morbidities of ASD. Recently, interest is rising in medical cannabis as a treatment for ASD, with promising clinical data. However, there is a notable absence of basic pre-clinical research in this field. In this study, we investigate the behavioral and biochemical effects of long-term oral treatment with CBD-enriched medical cannabis oil in a human mutation-based Shank3 mouse model of ASD. Our findings show that this treatment alleviates anxiety and decreases repetitive grooming behavior by over 70% in treated mutant mice compared to non-treated mutant mice. Furthermore, we were able to uncover the involvement of CB1 receptor (CB1R) signaling in the Avidekel oil mechanism, alongside a mitigation of cerebrospinal fluid (CSF) glutamate concentrations. Subsequently, RNA sequencing (RNA seq) of cerebellar brain samples revealed changes in mRNA expression of several neurotransmission-related genes post-treatment. Finally, our results question the relevancy of CBD enrichment of medical cannabis for treating the core symptoms of ASD, and emphasize the importance of the THC component for alleviating deficits in repetitive and social behaviors in ASD.


Assuntos
Transtorno do Espectro Autista , Cannabis , Maconha Medicinal , Animais , Transtorno do Espectro Autista/tratamento farmacológico , Modelos Animais de Doenças , Camundongos , Proteínas dos Microfilamentos , Proteínas do Tecido Nervoso , Comportamento Social
5.
eNeuro ; 7(1)2020.
Artigo em Inglês | MEDLINE | ID: mdl-31953317

RESUMO

The auditory brainstem compares sound-evoked excitation and inhibition from both ears to compute sound source location and determine spatial acuity. Although alterations to the anatomy and physiology of the auditory brainstem have been demonstrated in fragile X syndrome (FXS), it is not known whether these changes cause spatial acuity deficits in FXS. To test the hypothesis that FXS-related alterations to brainstem circuits impair spatial hearing abilities, a reflexive prepulse inhibition (PPI) task, with variations in sound (gap, location, masking) as the prepulse stimulus, was used on Fmr1 knock-out mice and B6 controls. Specifically, Fmr1 mice show decreased PPI compared with wild-type mice during gap detection, changes in sound source location, and spatial release from masking with no alteration to their overall startle thresholds compared with wild-type mice. Last, Fmr1 mice have increased latency to respond in these tasks, suggesting additional impairments in the pathway responsible for reacting to a startling sound. This study further supports data in humans with FXS that show similar deficits in PPI.


Assuntos
Síndrome do Cromossomo X Frágil , Audição , Estimulação Acústica , Animais , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Camundongos , Camundongos Knockout
6.
Artigo em Inglês | MEDLINE | ID: mdl-30171992

RESUMO

Autism Spectrum Disorder (ASD) is characterized by persistent deficits in social communication, restricted and repetitive patterns of behavior, interests, or activities and often intellectual disabilities. ASD has a number of prevalent co-morbidities, such as sleep disorders, attention deficit/hyperactivity disorder and epilepsy. No effective treatment for the core symptoms of ASD is currently available. There is increasing interest in cannabinoids, especially cannabidiol (CBD), as monotherapy or add-on treatment for the core symptoms and co-morbidities of ASD. In this review we summarize the available pre-clinical and clinical data regarding the safety and effectiveness of medical cannabis, including CBD, in young ASD patients. Cannabidiol seems to be a candidate for the treatment of ASD. At present, however, there are no convincing pre-clinical or clinical data showing efficacy and safety of cannabinoid treatment in ASD patients.


Assuntos
Transtorno do Espectro Autista/tratamento farmacológico , Canabidiol/uso terapêutico , Psicotrópicos/uso terapêutico , Animais , Canabidiol/efeitos adversos , Humanos , Psicotrópicos/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA