Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(21): 5405-5418.e16, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34619078

RESUMO

Lyme disease is on the rise. Caused by a spirochete Borreliella burgdorferi, it affects an estimated 500,000 people in the United States alone. The antibiotics currently used to treat Lyme disease are broad spectrum, damage the microbiome, and select for resistance in non-target bacteria. We therefore sought to identify a compound acting selectively against B. burgdorferi. A screen of soil micro-organisms revealed a compound highly selective against spirochetes, including B. burgdorferi. Unexpectedly, this compound was determined to be hygromycin A, a known antimicrobial produced by Streptomyces hygroscopicus. Hygromycin A targets the ribosomes and is taken up by B. burgdorferi, explaining its selectivity. Hygromycin A cleared the B. burgdorferi infection in mice, including animals that ingested the compound in a bait, and was less disruptive to the fecal microbiome than clinically relevant antibiotics. This selective antibiotic holds the promise of providing a better therapeutic for Lyme disease and eradicating it in the environment.


Assuntos
Antibacterianos/uso terapêutico , Doença de Lyme/tratamento farmacológico , Animais , Borrelia burgdorferi/efeitos dos fármacos , Calibragem , Cinamatos/química , Cinamatos/farmacologia , Cinamatos/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Fezes/microbiologia , Feminino , Células HEK293 , Células Hep G2 , Humanos , Higromicina B/análogos & derivados , Higromicina B/química , Higromicina B/farmacologia , Higromicina B/uso terapêutico , Doença de Lyme/microbiologia , Camundongos , Testes de Sensibilidade Microbiana , Microbiota/efeitos dos fármacos
2.
Annu Rev Biochem ; 87: 451-478, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29570352

RESUMO

Genetic information is translated into proteins by the ribosome. Structural studies of the ribosome and of its complexes with factors and inhibitors have provided invaluable information on the mechanism of protein synthesis. Ribosome inhibitors are among the most successful antimicrobial drugs and constitute more than half of all medicines used to treat infections. However, bacterial infections are becoming increasingly difficult to treat because the microbes have developed resistance to the most effective antibiotics, creating a major public health care threat. This has spurred a renewed interest in structure-function studies of protein synthesis inhibitors, and in few cases, compounds have been developed into potent therapeutic agents against drug-resistant pathogens. In this review, we describe the modes of action of many ribosome-targeting antibiotics, highlight the major resistance mechanisms developed by pathogenic bacteria, and discuss recent advances in structure-assisted design of new molecules.


Assuntos
Antibacterianos/farmacologia , Ribossomos/efeitos dos fármacos , Animais , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Sítios de Ligação , Desenho de Fármacos , Resistência Microbiana a Medicamentos , Humanos , Modelos Biológicos , Modelos Moleculares , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores da Síntese de Proteínas/química , Inibidores da Síntese de Proteínas/farmacologia , Ribossomos/química , Ribossomos/metabolismo , Relação Estrutura-Atividade
3.
Nature ; 599(7885): 507-512, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34707295

RESUMO

The dearth of new medicines effective against antibiotic-resistant bacteria presents a growing global public health concern1. For more than five decades, the search for new antibiotics has relied heavily on the chemical modification of natural products (semisynthesis), a method ill-equipped to combat rapidly evolving resistance threats. Semisynthetic modifications are typically of limited scope within polyfunctional antibiotics, usually increase molecular weight, and seldom permit modifications of the underlying scaffold. When properly designed, fully synthetic routes can easily address these shortcomings2. Here we report the structure-guided design and component-based synthesis of a rigid oxepanoproline scaffold which, when linked to the aminooctose residue of clindamycin, produces an antibiotic of exceptional potency and spectrum of activity, which we name iboxamycin. Iboxamycin is effective against ESKAPE pathogens including strains expressing Erm and Cfr ribosomal RNA methyltransferase enzymes, products of genes that confer resistance to all clinically relevant antibiotics targeting the large ribosomal subunit, namely macrolides, lincosamides, phenicols, oxazolidinones, pleuromutilins and streptogramins. X-ray crystallographic studies of iboxamycin in complex with the native bacterial ribosome, as well as with the Erm-methylated ribosome, uncover the structural basis for this enhanced activity, including a displacement of the [Formula: see text] nucleotide upon antibiotic binding. Iboxamycin is orally bioavailable, safe and effective in treating both Gram-positive and Gram-negative bacterial infections in mice, attesting to the capacity for chemical synthesis to provide new antibiotics in an era of increasing resistance.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/classificação , Clindamicina/síntese química , Clindamicina/farmacologia , Descoberta de Drogas , Lincomicina/síntese química , Lincomicina/farmacologia , Metiltransferases/genética , Metiltransferases/metabolismo , Testes de Sensibilidade Microbiana , Modelos Moleculares , Oxepinas , Piranos , RNA Mensageiro/metabolismo , RNA de Transferência/metabolismo , Ribossomos/química , Ribossomos/efeitos dos fármacos , Ribossomos/metabolismo , Thermus thermophilus/efeitos dos fármacos , Thermus thermophilus/enzimologia , Thermus thermophilus/genética
4.
Proc Natl Acad Sci U S A ; 121(2): e2314101120, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38165935

RESUMO

Mycobacterium abscessus (Mab), a nontuberculous mycobacterial (NTM) species, is an emerging pathogen with high intrinsic drug resistance. Current standard-of-care therapy results in poor outcomes, demonstrating the urgent need to develop effective antimycobacterial regimens. Through synthetic modification of spectinomycin (SPC), we have identified a distinct structural subclass of N-ethylene linked aminomethyl SPCs (eAmSPCs) that are up to 64-fold more potent against Mab over the parent SPC. Mechanism of action and crystallography studies demonstrate that the eAmSPCs display a mode of ribosomal inhibition consistent with SPC. However, they exert their increased antimicrobial activity through enhanced accumulation, largely by circumventing efflux mechanisms. The N-ethylene linkage within this series plays a critical role in avoiding TetV-mediated efflux, as lead eAmSPC 2593 displays a mere fourfold susceptibility improvement against Mab ΔtetV, in contrast to the 64-fold increase for SPC. Even a minor shortening of the linkage by a single carbon, akin to 1st generation AmSPC 1950, results in a substantial increase in MICs and a 16-fold rise in susceptibility against Mab ΔtetV. These shifts suggest that longer linkages might modify the kinetics of drug expulsion by TetV, ultimately shifting the equilibrium towards heightened intracellular concentrations and enhanced antimicrobial efficacy. Furthermore, lead eAmSPCs were also shown to synergize with various classes of anti-Mab antibiotics and retain activity against clinical isolates and other mycobacterial strains. Encouraging pharmacokinetic profiles coupled with robust efficacy in Mab murine infection models suggest that eAmSPCs hold the potential to be developed into treatments for Mab and other NTM infections.


Assuntos
Anti-Infecciosos , Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Humanos , Animais , Camundongos , Espectinomicina/farmacologia , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/microbiologia , Antibacterianos/farmacologia , Micobactérias não Tuberculosas , Anti-Infecciosos/farmacologia , Etilenos/farmacologia , Testes de Sensibilidade Microbiana
5.
Nat Chem Biol ; 20(7): 867-876, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38238495

RESUMO

The bacterial ribosome is an essential drug target as many clinically important antibiotics bind and inhibit its functional centers. The catalytic peptidyl transferase center (PTC) is targeted by the broadest array of inhibitors belonging to several chemical classes. One of the most abundant and clinically prevalent resistance mechanisms to PTC-acting drugs in Gram-positive bacteria is C8-methylation of the universally conserved A2503 nucleobase by Cfr methylase in 23S ribosomal RNA. Despite its clinical importance, a sufficient understanding of the molecular mechanisms underlying Cfr-mediated resistance is currently lacking. Here, we report a set of high-resolution structures of the Cfr-modified 70S ribosome containing aminoacyl- and peptidyl-transfer RNAs. These structures reveal an allosteric rearrangement of nucleotide A2062 upon Cfr-mediated methylation of A2503 that likely contributes to the reduced potency of some PTC inhibitors. Additionally, we provide the structural bases behind two distinct mechanisms of engaging the Cfr-methylated ribosome by the antibiotics iboxamycin and tylosin.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Antibacterianos/farmacologia , Antibacterianos/química , Farmacorresistência Bacteriana/efeitos dos fármacos , Ribossomos/metabolismo , Ribossomos/efeitos dos fármacos , Ribossomos/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Escherichia coli/genética , RNA Ribossômico 23S/química , RNA Ribossômico 23S/metabolismo , Metiltransferases/metabolismo , Metiltransferases/química , Metiltransferases/antagonistas & inibidores , Metilação , Modelos Moleculares , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Escherichia coli/genética
6.
Mol Cell ; 70(1): 83-94.e7, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29625040

RESUMO

Growing resistance of pathogenic bacteria and shortage of antibiotic discovery platforms challenge the use of antibiotics in the clinic. This threat calls for exploration of unconventional sources of antibiotics and identification of inhibitors able to eradicate resistant bacteria. Here we describe a different class of antibiotics, odilorhabdins (ODLs), produced by the enzymes of the non-ribosomal peptide synthetase gene cluster of the nematode-symbiotic bacterium Xenorhabdus nematophila. ODLs show activity against Gram-positive and Gram-negative pathogens, including carbapenem-resistant Enterobacteriaceae, and can eradicate infections in animal models. We demonstrate that the bactericidal ODLs interfere with protein synthesis. Genetic and structural analyses reveal that ODLs bind to the small ribosomal subunit at a site not exploited by current antibiotics. ODLs induce miscoding and promote hungry codon readthrough, amino acid misincorporation, and premature stop codon bypass. We propose that ODLs' miscoding activity reflects their ability to increase the affinity of non-cognate aminoacyl-tRNAs to the ribosome.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Proteínas de Bactérias/biossíntese , DNA Bacteriano/genética , Infecções por Klebsiella/tratamento farmacológico , Subunidades Ribossômicas Menores/efeitos dos fármacos , Xenorhabdus/metabolismo , Aminoaciltransferases/genética , Aminoaciltransferases/metabolismo , Animais , Antibacterianos/metabolismo , Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/genética , Sítios de Ligação , Modelos Animais de Doenças , Feminino , Células Hep G2 , Humanos , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Masculino , Camundongos Endogâmicos ICR , Biossíntese de Proteínas/efeitos dos fármacos , Subunidades Ribossômicas Menores/genética , Subunidades Ribossômicas Menores/metabolismo
7.
Nat Chem Biol ; 19(9): 1082-1090, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36997647

RESUMO

The proline-rich antimicrobial peptide (PrAMP) Drosocin (Dro) from fruit flies shows sequence similarity to other PrAMPs that bind to the ribosome and inhibit protein synthesis by varying mechanisms. The target and mechanism of action of Dro, however, remain unknown. Here we show that Dro arrests ribosomes at stop codons, probably sequestering class 1 release factors associated with the ribosome. This mode of action is comparable to that of apidaecin (Api) from honeybees, making Dro the second member of the type II PrAMP class. Nonetheless, analysis of a comprehensive library of endogenously expressed Dro mutants shows that the interactions of Dro and Api with the target are markedly distinct. While only a few C-terminal amino acids of Api are critical for binding, the interaction of Dro with the ribosome relies on multiple amino acid residues distributed throughout the PrAMP. Single-residue substitutions can substantially enhance the on-target activity of Dro.


Assuntos
Peptídeos Antimicrobianos , Biossíntese de Proteínas , Animais , Escherichia coli/metabolismo , Glicopeptídeos/química , Drosophila/química , Drosophila/metabolismo
8.
Nucleic Acids Res ; 51(1): 449-462, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36546783

RESUMO

Thermorubin (THR) is an aromatic anthracenopyranone antibiotic active against both Gram-positive and Gram-negative bacteria. It is known to bind to the 70S ribosome at the intersubunit bridge B2a and was thought to inhibit factor-dependent initiation of translation and obstruct the accommodation of tRNAs into the A site. Here, we show that thermorubin causes ribosomes to stall in vivo and in vitro at internal and termination codons, thereby allowing the ribosome to initiate protein synthesis and translate at least a few codons before stalling. Our biochemical data show that THR affects multiple steps of translation elongation with a significant impact on the binding stability of the tRNA in the A site, explaining premature cessation of translation. Our high-resolution crystal and cryo-EM structures of the 70S-THR complex show that THR can co-exist with P- and A-site tRNAs, explaining how ribosomes can elongate in the presence of the drug. Remarkable is the ability of THR to arrest ribosomes at the stop codons. Our data suggest that by causing structural re-arrangements in the decoding center, THR interferes with the accommodation of tRNAs or release factors into the ribosomal A site.


Assuntos
Antraquinonas , Antibacterianos , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Biossíntese de Proteínas , Antibacterianos/farmacologia , Códon de Terminação/metabolismo , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Ribossomos/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Antraquinonas/farmacologia
9.
Acc Chem Res ; 56(19): 2713-2725, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37728742

RESUMO

Protein biosynthesis is a central process in all living cells that is catalyzed by a complex molecular machine─the ribosome. This process is termed translation because the language of nucleotides in mRNAs is translated into the language of amino acids in proteins. Transfer RNA (tRNA) molecules charged with amino acids serve as adaptors and recognize codons of mRNA in the decoding center while simultaneously the individual amino acids are assembled into a peptide chain in the peptidyl transferase center (PTC). As the nascent peptide emerges from the ribosome, it is threaded through a long tunnel referred to as a nascent peptide exit tunnel (NPET). The PTC and NPET are the sites targeted by many antibiotics and are thus of tremendous importance from a biomedical perspective and for drug development in the pharmaceutical industry.Researchers have achieved much progress in characterizing ribosomal translation at the molecular level; an impressive number of high-resolution structures of different functional and inhibited states of the ribosome are now available. These structures have significantly contributed to our understanding of how the ribosome interacts with its key substrates, namely, mRNA, tRNAs, and translation factors. In contrast, much less is known about the mechanisms of how small molecules, especially antibiotics, affect ribosomal protein synthesis. This mainly concerns the structural basis of small molecule-NPET interference with cotranslational protein folding and the regulation of protein synthesis. Growing biochemical evidence suggests that NPET plays an active role in the regulation of protein synthesis.Much-needed progress in this field is hampered by the fact that during the preparation of ribosome complexes for structural studies (i.e., X-ray crystallography, cryoelectron microscopy, and NMR spectroscopy) the aminoacyl- or peptidyl-tRNAs are unstable and become hydrolyzed. A solution to this problem is the application of hydrolysis-resistant mimics of aminoacyl- or peptidyl-tRNAs.In this Account, we present an overview of synthetic methods for the generation of peptidyl-tRNA analogs. Modular approaches have been developed that combine (i) RNA and peptide solid-phase synthesis on 3'-aminoacylamino-adenosine resins, (ii) native chemical ligations and Staudinger ligations, (iii) tailoring of tRNAs by the selective cleavage of natural native tRNAs with DNAzymes followed by reassembly with enzymatic ligation to synthetic peptidyl-RNA fragments, and (iv) enzymatic tailing and cysteine charging of the tRNA to obtain modified CCA termini of a tRNA that are chemically ligated to the peptide moiety of interest. With this arsenal of tools, in principle, any desired sequence of a stably linked peptidyl-tRNA mimic is accessible. To underline the significance of the synthetic conjugates, we briefly point to the most critical applications that have shed new light on the molecular mechanisms underlying the context-specific activity of ribosome-targeting antibiotics, ribosome-dependent incorporation of multiple consecutive proline residues, the incorporation of d-amino acids, and tRNA mischarging.Furthermore, we discuss new types of stably charged tRNA analogs, relying on triazole- and squarate (instead of amide)-linked conjugates. Those have pushed forward our mechanistic understanding of nonribosomal peptide synthesis, where aminoacyl-tRNA-dependent enzymes are critically involved in various cellular processes in primary and secondary metabolism and in bacterial cell wall synthesis.


Assuntos
RNA de Transferência , RNA , Microscopia Crioeletrônica , Aminoácidos , Biossíntese de Proteínas , Peptídeos/química , Antibacterianos/farmacologia , RNA Mensageiro , Biologia
10.
Nucleic Acids Res ; 50(13): 7669-7679, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35766409

RESUMO

Ribosome serves as a universal molecular machine capable of synthesis of all the proteins in a cell. Small-molecule inhibitors, such as ribosome-targeting antibiotics, can compromise the catalytic versatility of the ribosome in a context-dependent fashion, preventing transpeptidation only between particular combinations of substrates. Classic peptidyl transferase center inhibitor chloramphenicol (CHL) fails to inhibit transpeptidation reaction when the incoming A site acceptor substrate is glycine, and the molecular basis for this phenomenon is unknown. Here, we present a set of high-resolution X-ray crystal structures that explain why CHL is unable to inhibit peptide bond formation between the incoming glycyl-tRNA and a nascent peptide that otherwise is conducive to the drug action. Our structures reveal that fully accommodated glycine residue can co-exist in the A site with the ribosome-bound CHL. Moreover, binding of CHL to a ribosome complex carrying glycyl-tRNA does not affect the positions of the reacting substrates, leaving the peptide bond formation reaction unperturbed. These data exemplify how small-molecule inhibitors can reshape the A-site amino acid binding pocket rendering it permissive only for specific amino acid residues and rejective for the other substrates extending our detailed understanding of the modes of action of ribosomal antibiotics.


Assuntos
Cloranfenicol , Peptidil Transferases , Aminoácidos/metabolismo , Antibacterianos/química , Antibacterianos/farmacologia , Sítios de Ligação , Cloranfenicol/farmacologia , Glicina , Peptídeos/química , Peptidil Transferases/metabolismo , RNA de Transferência/metabolismo
11.
Nat Chem Biol ; 17(4): 412-420, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33462493

RESUMO

Many antibiotics inhibit bacterial growth by binding to the ribosome and interfering with protein biosynthesis. Macrolides represent one of the most successful classes of ribosome-targeting antibiotics. The main clinically relevant mechanism of resistance to macrolides is dimethylation of the 23S rRNA nucleotide A2058, located in the drug-binding site, a reaction catalyzed by Erm-type rRNA methyltransferases. Here, we present the crystal structure of the Erm-dimethylated 70S ribosome at 2.4 Å resolution, together with the structures of unmethylated 70S ribosome functional complexes alone or in combination with macrolides. Altogether, our structural data do not support previous models and, instead, suggest a principally new explanation of how A2058 dimethylation confers resistance to macrolides. Moreover, high-resolution structures of two macrolide antibiotics bound to the unmodified ribosome reveal a previously unknown role of the desosamine moiety in drug binding, laying a foundation for the rational knowledge-based design of macrolides that can overcome Erm-mediated resistance.


Assuntos
Macrolídeos/metabolismo , RNA Ribossômico/ultraestrutura , Ribossomos/ultraestrutura , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Macrolídeos/farmacologia , Metilação , RNA Ribossômico/genética , RNA Ribossômico 23S/genética , RNA Ribossômico 23S/metabolismo , RNA Ribossômico 23S/ultraestrutura , Ribossomos/genética , Ribossomos/metabolismo
12.
Mol Cell ; 58(5): 832-44, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-26028538

RESUMO

The increase in multi-drug-resistant bacteria is limiting the effectiveness of currently approved antibiotics, leading to a renewed interest in antibiotics with distinct chemical scaffolds. We have solved the structures of the Thermus thermophilus 70S ribosome with A-, P-, and E-site tRNAs bound and in complex with either the aminocyclitol-containing antibiotic hygromycin A (HygA) or the nucleoside antibiotic A201A. Both antibiotics bind at the peptidyl transferase center and sterically occlude the CCA-end of the A-tRNA from entering the A site of the peptidyl transferase center. Single-molecule Förster resonance energy transfer (smFRET) experiments reveal that HygA and A201A specifically interfere with full accommodation of the A-tRNA, leading to the presence of tRNA accommodation intermediates and thereby inhibiting peptide bond formation. Thus, our results provide not only insight into the mechanism of action of HygA and A201A, but also into the fundamental process of tRNA accommodation during protein synthesis.


Assuntos
Aminoglicosídeos/química , Antibacterianos/química , Cinamatos/química , Higromicina B/análogos & derivados , RNA de Transferência/química , Subunidades Ribossômicas Maiores de Bactérias/química , Subunidades Ribossômicas Menores de Bactérias/química , Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Cinamatos/farmacologia , Cristalografia por Raios X , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Farmacorresistência Bacteriana , Escherichia coli/efeitos dos fármacos , Ligação de Hidrogênio , Higromicina B/química , Higromicina B/farmacologia , Modelos Moleculares , Conformação Proteica , Thermus thermophilus
13.
Proc Natl Acad Sci U S A ; 117(34): 20530-20537, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32817463

RESUMO

Sarecycline is a new narrow-spectrum tetracycline-class antibiotic approved for the treatment of acne vulgaris. Tetracyclines share a common four-ring naphthacene core and inhibit protein synthesis by interacting with the 70S bacterial ribosome. Sarecycline is distinguished chemically from other tetracyclines because it has a 7-[[methoxy(methyl)amino]methyl] group attached at the C7 position of ring D. To investigate the functional role of this C7 moiety, we determined the X-ray crystal structure of sarecycline bound to the Thermus thermophilus 70S ribosome. Our 2.8-Å resolution structure revealed that sarecycline binds at the canonical tetracycline binding site located in the decoding center of the small ribosomal subunit. Importantly, unlike other tetracyclines, the unique C7 extension of sarecycline extends into the messenger RNA (mRNA) channel to form a direct interaction with the A-site codon to possibly interfere with mRNA movement through the channel and/or disrupt A-site codon-anticodon interaction. Based on our biochemical studies, sarecycline appears to be a more potent initiation inhibitor compared to other tetracyclines, possibly due to drug interactions with the mRNA, thereby blocking accommodation of the first aminoacyl transfer RNA (tRNA) into the A site. Overall, our structural and biochemical findings rationalize the role of the unique C7 moiety of sarecycline in antibiotic action.


Assuntos
Antibacterianos/farmacologia , Ribossomos/efeitos dos fármacos , Tetraciclinas/farmacologia , Antibacterianos/química , RNA Ribossômico 16S/química , Tetraciclinas/química , Thermus thermophilus
14.
RNA ; 26(6): 715-723, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32144191

RESUMO

Macrolides are one of the most successful and widely used classes of antibacterials, which kill or stop the growth of pathogenic bacteria by binding near the active site of the ribosome and interfering with protein synthesis. Dirithromycin is a derivative of the prototype macrolide erythromycin with additional hydrophobic side chain. In our recent study, we have discovered that the side chain of dirithromycin forms lone pair-π stacking interaction with the aromatic imidazole ring of the His69 residue in ribosomal protein uL4 of the Thermus thermophilus 70S ribosome. In the current work, we found that neither the presence of the side chain, nor the additional contact with the ribosome, improve the binding affinity of dirithromycin to the ribosome. Nevertheless, we found that dirithromycin is a more potent inhibitor of in vitro protein synthesis in comparison with its parent compound, erythromycin. Using high-resolution cryo-electron microscopy, we determined the structure of the dirithromycin bound to the translating Escherichia coli 70S ribosome, which suggests that the better inhibitory properties of the drug could be rationalized by the side chain of dirithromycin pointing into the lumen of the nascent peptide exit tunnel, where it can interfere with the normal passage of the growing polypeptide chain.


Assuntos
Antibacterianos/química , Eritromicina/análogos & derivados , Inibidores da Síntese de Proteínas/química , Ribossomos/química , Antibacterianos/farmacologia , Microscopia Crioeletrônica , Eritromicina/química , Eritromicina/farmacologia , Escherichia coli/genética , Modelos Moleculares , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacologia , RNA Ribossômico 23S/química
15.
Nat Chem Biol ; 16(10): 1071-1077, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32601485

RESUMO

The increase in multi-drug resistant pathogenic bacteria is making our current arsenal of clinically used antibiotics obsolete, highlighting the urgent need for new lead compounds with distinct target binding sites to avoid cross-resistance. Here we report that the aromatic polyketide antibiotic tetracenomycin (TcmX) is a potent inhibitor of protein synthesis, and does not induce DNA damage as previously thought. Despite the structural similarity to the well-known translation inhibitor tetracycline, we show that TcmX does not interact with the small ribosomal subunit, but rather binds to the large subunit, within the polypeptide exit tunnel. This previously unappreciated binding site is located adjacent to the macrolide-binding site, where TcmX stacks on the noncanonical basepair formed by U1782 and U2586 of the 23S ribosomal RNA. Although the binding site is distinct from the macrolide antibiotics, our results indicate that like macrolides, TcmX allows translation of short oligopeptides before further translation is blocked.


Assuntos
Amycolatopsis/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Amycolatopsis/genética , Amycolatopsis/metabolismo , Sítios de Ligação , Microscopia Crioeletrônica , Farmacorresistência Bacteriana , Escherichia coli , Células HEK293 , Humanos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Mutação , Naftacenos/química , Naftacenos/farmacologia , Ligação Proteica , Biossíntese de Proteínas/efeitos dos fármacos , Conformação Proteica , Ribossomos/metabolismo
16.
Mol Cell ; 56(4): 541-50, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25306922

RESUMO

Negamycin (NEG) is a ribosome-targeting antibiotic that exhibits clinically promising activity. Its binding site and mode of action have remained unknown. We solved the structure of the Thermus thermophilus ribosome bound to mRNA and three tRNAs, in complex with NEG. The drug binds to both small and large ribosomal subunits at nine independent sites. Resistance mutations in the 16S rRNA unequivocally identified the binding site in the vicinity of the conserved helix 34 (h34) in the small subunit as the primary site of antibiotic action in the bacterial and, possibly, eukaryotic ribosome. At this site, NEG contacts 16S rRNA as well as the anticodon loop of the A-site tRNA. Although the NEG site of action overlaps with that of tetracycline (TET), the two antibiotics exhibit different activities: while TET sterically hinders binding of aminoacyl-tRNA to the ribosome, NEG stabilizes its binding, thereby inhibiting translocation and stimulating miscoding.


Assuntos
Antibacterianos/química , Inibidores da Síntese de Proteínas/química , RNA Bacteriano/química , RNA Ribossômico/química , RNA de Transferência/química , Motivos de Aminoácidos , Diamino Aminoácidos/química , Sequência de Bases , Sítios de Ligação , Cristalografia por Raios X , Modelos Moleculares , Biossíntese de Proteínas , Estabilidade de RNA , RNA Mensageiro/química , Subunidades Ribossômicas Maiores de Bactérias/química , Subunidades Ribossômicas Menores de Bactérias/química , Thermus thermophilus
17.
Mol Cell ; 56(4): 531-40, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25306919

RESUMO

We demonstrate that the antibiotic amicoumacin A (AMI) is a potent inhibitor of protein synthesis. Resistance mutations in helix 24 of the 16S rRNA mapped the AMI binding site to the small ribosomal subunit. The crystal structure of bacterial ribosome in complex with AMI solved at 2.4 Å resolution revealed that the antibiotic makes contacts with universally conserved nucleotides of 16S rRNA in the E site and the mRNA backbone. Simultaneous interactions of AMI with 16S rRNA and mRNA and the in vivo experimental evidence suggest that it may inhibit the progression of the ribosome along mRNA. Consistent with this proposal, binding of AMI interferes with translocation in vitro. The inhibitory action of AMI can be partly compensated by mutations in the translation elongation factor G.


Assuntos
Antibacterianos/química , Cumarínicos/química , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores da Síntese de Proteínas/química , Estabilidade de RNA , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Sequência de Bases , Sítios de Ligação , Cumarínicos/farmacologia , Cristalografia por Raios X , Farmacorresistência Bacteriana , Escherichia coli , Testes de Sensibilidade Microbiana , Modelos Moleculares , Fator G para Elongação de Peptídeos/genética , Inibidores da Síntese de Proteínas/farmacologia , RNA Mensageiro/metabolismo , Subunidades Ribossômicas Maiores de Bactérias/química , Subunidades Ribossômicas Menores de Bactérias/química , Staphylococcus aureus/genética , Thermus thermophilus
18.
Proc Natl Acad Sci U S A ; 116(46): 23068-23074, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31672910

RESUMO

Chemical modifications of RNAs have long been established as key modulators of nonprotein-coding RNA structure and function in cells. There is a growing appreciation that messenger RNA (mRNA) sequences responsible for directing protein synthesis can also be posttranscriptionally modified. The enzymatic incorporation of mRNA modifications has many potential outcomes, including changing mRNA stability, protein recruitment, and translation. We tested how one of the most common modifications present in mRNA coding regions, pseudouridine (Ψ), impacts protein synthesis using a fully reconstituted bacterial translation system and human cells. Our work reveals that replacing a single uridine nucleotide with Ψ in an mRNA codon impedes amino acid addition and EF-Tu GTPase activation. A crystal structure of the Thermus thermophilus 70S ribosome with a tRNAPhe bound to a ΨUU codon in the A site supports these findings. We also find that the presence of Ψ can promote the low-level synthesis of multiple peptide products from a single mRNA sequence in the reconstituted translation system as well as human cells, and increases the rate of near-cognate Val-tRNAVal reacting on a ΨUU codon. The vast majority of Ψ moieties in mRNAs are found in coding regions, and our study suggests that one consequence of the ribosome encountering Ψ can be to modestly alter both translation speed and mRNA decoding.


Assuntos
Biossíntese de Proteínas , Pseudouridina/metabolismo , RNA Bacteriano/genética , RNA Mensageiro/genética , Thermus thermophilus/genética , Códon/genética , Códon/metabolismo , Fases de Leitura Aberta , Elongação Traducional da Cadeia Peptídica , Pseudouridina/genética , Processamento Pós-Transcricional do RNA , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Thermus thermophilus/metabolismo , Uridina/metabolismo
19.
RNA ; 25(5): 600-606, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30733327

RESUMO

The 70S ribosome is a major target for antibacterial drugs. Two of the classical antibiotics, chloramphenicol (CHL) and erythromycin (ERY), competitively bind to adjacent but separate sites on the bacterial ribosome: the catalytic peptidyl transferase center (PTC) and the nascent polypeptide exit tunnel (NPET), respectively. The previously reported competitive binding of CHL and ERY might be due either to a direct collision of the two drugs on the ribosome or due to a drug-induced allosteric effect. Because of the resolution limitations, the available structures of these antibiotics in complex with bacterial ribosomes do not allow us to discriminate between these two possible mechanisms. In this work, we have obtained two crystal structures of CHL and ERY in complex with the Thermus thermophilus 70S ribosome at a higher resolution (2.65 and 2.89 Å, respectively) allowing unambiguous placement of the drugs in the electron density maps. Our structures provide evidence of the direct collision of CHL and ERY on the ribosome, which rationalizes the observed competition between the two drugs.


Assuntos
Antibacterianos/química , Cloranfenicol/química , Eritromicina/química , Subunidades Ribossômicas/efeitos dos fármacos , Thermus thermophilus/efeitos dos fármacos , Antibacterianos/farmacologia , Sítios de Ligação , Ligação Competitiva , Cloranfenicol/farmacologia , Cristalografia por Raios X , Eritromicina/farmacologia , Escherichia coli/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Modelos Moleculares , Peptidil Transferases/antagonistas & inibidores , Peptidil Transferases/química , Peptidil Transferases/genética , Peptidil Transferases/metabolismo , Ligação Proteica , Biossíntese de Proteínas , Conformação Proteica , Subunidades Ribossômicas/genética , Subunidades Ribossômicas/metabolismo , Subunidades Ribossômicas/ultraestrutura , Thermus thermophilus/química , Thermus thermophilus/genética , Thermus thermophilus/metabolismo
20.
Biochemistry (Mosc) ; 86(9): 1122-1127, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34565315

RESUMO

Class I release factors (RFs) recognize stop codons in the sequences of mRNAs and are required for the hydrolysis of peptidyl-tRNA in the ribosomal P site during the final step of protein synthesis in bacteria, resulting in the release of a complete polypeptide chain from the ribosome. A key role in this process belongs to the highly conserved GGQ motif in RFs. Mutations in this motif can reduce the hydrolysis rate or even completely inhibit the reaction. Previously, it was hypothesized that the amino acid residues of GGQ (especially glutamine) are essential for the proper coordination of the water molecule for subsequent hydrolysis of the ester bond. However, available structures of the 70S ribosome termination complex do not allow unambiguous identification of the exact orientation of the carbonyl group in peptidyl-tRNA relative to the GGQ, as well as of the position of the catalytic water molecule in the peptidyl transferase center (PTC). This mini-review summarizes key facts and hypotheses on the role of GGQ in the catalysis of peptide release, as well as suggests and discusses future experiments aimed to produce high-quality structural data for deciphering the precise mechanism of RF-mediated catalysis.


Assuntos
Ésteres/metabolismo , Aminoacil-RNA de Transferência/metabolismo , Motivos de Aminoácidos , Biocatálise , Hidrólise , Terminação Traducional da Cadeia Peptídica , Peptídeos/metabolismo , Peptidil Transferases/metabolismo , Biossíntese de Proteínas , Ribossomos/química , Ribossomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA