Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 11(1): e0147522, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26808681

RESUMO

H5N1 virus infection results in ~60% mortality in patients primarily due to respiratory failure, but the underlying causes of mortality are unclear. The goal of this study is to reveal respiratory disorders occurring at the early stage of infection that may be responsible for subsequent respiratory failure and death. BALB/c mice were intranasally infected with one of two H5N1 virus strains: HK483 (lethal) or HK486 (non-lethal) virus. Pulmonary ventilation and the responses to hypoxia (HVR; 7% O2 for 3 min) and hypercapnia (HCVR; 7% CO2 for 5 min) were measured daily at 2 days prior and 1, 2, and 3 days postinfection (dpi) and compared to mortality typically by 8 dpi. At 1, 2, and 3 dpi, immunoreactivities (IR) of substance P (SP-IR) in the nodose ganglion or tyrosine hydroxylase (TH-IR) in the carotid body coupled with the nucleoprotein of influenza A (NP-IR) was examined in some mice, while arterial blood was collected in others. Our results showed that at 2 and 3 dpi: 1) both viral infections failed to alter body temperature and weight, [Formula: see text], or induce viremia while producing similarly high lung viral titers; 2) HK483, but not HK486, virus induced tachypnea and depressed HVR and HCVR without changes in arterial blood pH and gases; and 3) only HK483 virus led to NP-IR in vagal SP-IR neurons, but not in the carotid body, and increased density of vagal SP-IR neurons. In addition, all HK483, rather than HK486, mice died at 6 to 8 dpi and the earlier death was correlated with more severe depression of HVR and HCVR. Our data suggest that tachypnea and depressed HVR/HCVR occur at the early stage of lethal H5N1 viral infection associated with viral replication and increased SP-IR density in vagal neurons, which may contribute to the respiratory failure and death.


Assuntos
Virus da Influenza A Subtipo H5N1/fisiologia , Animais , Feminino , Imunofluorescência , Humanos , Hipercapnia/diagnóstico , Hipóxia/diagnóstico , Influenza Humana , Camundongos , Camundongos Endogâmicos BALB C
2.
PLoS One ; 7(4): e33118, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22509254

RESUMO

Person-to-person transmission of influenza viruses occurs by contact (direct and fomites) and non-contact (droplet and small particle aerosol) routes, but the quantitative dynamics and relative contributions of these routes are incompletely understood. The transmissibility of influenza strains estimated from secondary attack rates in closed human populations is confounded by large variations in population susceptibilities. An experimental method to phenotype strains for transmissibility in an animal model could provide relative efficiencies of transmission. We developed an experimental method to detect exhaled viral aerosol transmission between unanesthetized infected and susceptible ferrets, measured aerosol particle size and number, and quantified the viral genomic RNA in the exhaled aerosol. During brief 3-hour exposures to exhaled viral aerosols in airflow-controlled chambers, three strains of pandemic 2009 H1N1 strains were frequently transmitted to susceptible ferrets. In contrast one seasonal H1N1 strain was not transmitted in spite of higher levels of viral RNA in the exhaled aerosol. Among three pandemic strains, the two strains causing weight loss and illness in the intranasally infected 'donor' ferrets were transmitted less efficiently from the donor than the strain causing no detectable illness, suggesting that the mucosal inflammatory response may attenuate viable exhaled virus. Although exhaled viral RNA remained constant, transmission efficiency diminished from day 1 to day 5 after donor infection. Thus, aerosol transmission between ferrets may be dependent on at least four characteristics of virus-host relationships including the level of exhaled virus, infectious particle size, mucosal inflammation, and viral replication efficiency in susceptible mucosa.


Assuntos
Expiração , Furões/virologia , Vírus da Influenza A Subtipo H1N1/patogenicidade , Infecções por Orthomyxoviridae/transmissão , Pandemias , Estações do Ano , Aerossóis , Animais , Humanos , Vírus da Influenza A Subtipo H1N1/metabolismo , Vírus da Influenza A Subtipo H1N1/fisiologia , Pulmão/virologia , Masculino , Nebulizadores e Vaporizadores , Pandemias/prevenção & controle , RNA Viral/metabolismo , Especificidade da Espécie , Fatores de Tempo , Carga Viral
3.
Vaccine ; 29(37): 6242-51, 2011 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-21736913

RESUMO

BACKGROUND: The reduced immunogenicity of the H5 hemagglutinin (HA), compared to seasonal HA serotypes, has stimulated searches for effective adjuvants to improve H5 vaccine efficacy. This study examined the immunogenicity and protective efficacy in ferrets immunized with a split-virion H5N1 vaccine combined with Advax™, a novel delta inulin-based polysaccharide adjuvant technology that has previously demonstrated ability to augment humoral and cellular immunity to co-administered antigens. METHODS: Ferrets were vaccinated twice 21 days apart with 7.5 µg or 22.5 µg of a split-virion preparation of A/Vietnam/1203/2004 with or without adjuvant. An additional group received just one immunization with 22.5 µg HA plus adjuvant. Serum antibodies were measured by hemagglutination inhibition and microneutralization assays. Vaccinated animals were challenged intranasally 21 days after the last immunization with 10(6) EID(50) of the homologous strain. Morbidity was assessed by observed behavior, weight loss, temperature, cytopenias, histopathology, and viral load. RESULTS: No serum neutralization antibody was detected after two immunizations with unadjuvanted vaccine. Two immunizations with high or low dose adjuvanted vaccine stimulated high neutralizing antibody titers. Survival was 100% in all groups receiving adjuvanted-vaccine including the single dose group, compared to 67% survival with unadjuvanted vaccine, and 0% survival in saline or adjuvant-alone controls. Minimal morbidity was seen in all animals receiving adjuvanted vaccine, and was limited to rhinorrhea and mild thrombocytopenia, without fever, weight loss, or reduced activity. H5N1 virus was cleared from the nasal wash by day 4 post-challenge only in animals receiving adjuvanted vaccine which also prevented viral invasion of the brain in most animals. CONCLUSIONS: In this initial study, Advax™ adjuvant formulations improved the protective efficacy of a split-virion H5N1 vaccine as measured by significantly enhanced immunogenicity, survival, and reduced morbidity.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/imunologia , Inulina/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Furões/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Imunização Secundária , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/mortalidade , Carga Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA