Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Nature ; 507(7493): 492-5, 2014 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-24509712

RESUMO

The reorganization of patterns of species diversity driven by anthropogenic climate change, and the consequences for humans, are not yet fully understood or appreciated. Nevertheless, changes in climate conditions are useful for predicting shifts in species distributions at global and local scales. Here we use the velocity of climate change to derive spatial trajectories for climatic niches from 1960 to 2009 (ref. 7) and from 2006 to 2100, and use the properties of these trajectories to infer changes in species distributions. Coastlines act as barriers and locally cooler areas act as attractors for trajectories, creating source and sink areas for local climatic conditions. Climate source areas indicate where locally novel conditions are not connected to areas where similar climates previously occurred, and are thereby inaccessible to climate migrants tracking isotherms: 16% of global surface area for 1960 to 2009, and 34% of ocean for the 'business as usual' climate scenario (representative concentration pathway (RCP) 8.5) representing continued use of fossil fuels without mitigation. Climate sink areas are where climate conditions locally disappear, potentially blocking the movement of climate migrants. Sink areas comprise 1.0% of ocean area and 3.6% of land and are prevalent on coasts and high ground. Using this approach to infer shifts in species distributions gives global and regional maps of the expected direction and rate of shifts of climate migrants, and suggests areas of potential loss of species richness.


Assuntos
Migração Animal , Mudança Climática , Clima , Ecossistema , Mapeamento Geográfico , Geografia , Animais , Austrália , Biodiversidade , Modelos Teóricos , Dinâmica Populacional , Água do Mar , Temperatura , Fatores de Tempo , Incerteza
2.
Glob Chang Biol ; 23(5): 2047-2057, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28122146

RESUMO

Shifts in species ranges are a global phenomenon, well known to occur in response to a changing climate. New species arriving in an area may become pest species, modify ecosystem structure, or represent challenges or opportunities for fisheries and recreation. Early detection of range shifts and prompt implementation of any appropriate management strategies is therefore crucial. This study investigates whether 'first sightings' of marine species outside their normal ranges could provide an early warning of impending climate-driven range shifts. We examine the relationships between first sightings and marine regions defined by patterns of local climate velocities (calculated on a 50-year timescale), while also considering the distribution of observational effort (i.e. number of sampling days recorded with biological observations in global databases). The marine trajectory regions include climate 'source' regions (areas lacking connections to warmer areas), 'corridor' regions (areas where moving isotherms converge), and 'sink' regions (areas where isotherms locally disappear). Additionally, we investigate the latitudinal band in which first sightings were recorded, and species' thermal affiliations. We found that first sightings are more likely to occur in climate sink and 'divergent' regions (areas where many rapid and diverging climate trajectories pass through) indicating a role of temperature in driving changes in marine species distributions. The majority of our fish first sightings appear to be tropical and subtropical species moving towards high latitudes, as would be expected in climate warming. Our results indicate that first sightings are likely related to longer-term climatic processes, and therefore have potential use to indicate likely climate-driven range shifts. The development of an approach to detect impending range shifts at an early stage will allow resource managers and researchers to better manage opportunities resulting from range-shifting species before they potentially colonize.


Assuntos
Mudança Climática , Ecossistema , Peixes , Animais , Clima , Temperatura , Clima Tropical
3.
Glob Chang Biol ; 23(10): 4440-4452, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28211249

RESUMO

Conservation efforts strive to protect significant swaths of terrestrial, freshwater and marine ecosystems from a range of threats. As climate change becomes an increasing concern, these efforts must take into account how resilient-protected spaces will be in the face of future drivers of change such as warming temperatures. Climate landscape metrics, which signal the spatial magnitude and direction of climate change, support a convenient initial assessment of potential threats to and opportunities within ecosystems to inform conservation and policy efforts where biological data are not available. However, inference of risk from purely physical climatic changes is difficult unless set in a meaningful ecological context. Here, we aim to establish this context using historical climatic variability, as a proxy for local adaptation by resident biota, to identify areas where current local climate conditions will remain extant and future regional climate analogues will emerge. This information is then related to the processes governing species' climate-driven range edge dynamics, differentiating changes in local climate conditions as promoters of species range contractions from those in neighbouring locations facilitating range expansions. We applied this approach to assess the future climatic stability and connectivity of Japanese waters and its network of marine protected areas (MPAs). We find 88% of Japanese waters transitioning to climates outside their historical variability bounds by 2035, resulting in large reductions in the amount of available climatic space potentially promoting widespread range contractions and expansions. Areas of high connectivity, where shifting climates converge, are present along sections of the coast facilitated by the strong latitudinal gradient of the Japanese archipelago and its ocean current system. While these areas overlap significantly with areas currently under significant anthropogenic pressures, they also include much of the MPA network that may provide stepping-stone protection for species that must shift their distribution because of climate change.


Assuntos
Mudança Climática , Ecossistema , Medição de Risco , Ecologia , Água Doce , Japão , Oceanos e Mares
4.
Glob Chang Biol ; 22(4): 1548-60, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26661135

RESUMO

Climate change is shifting species' distribution and phenology. Ecological traits, such as mobility or reproductive mode, explain variation in observed rates of shift for some taxa. However, estimates of relationships between traits and climate responses could be influenced by how responses are measured. We compiled a global data set of 651 published marine species' responses to climate change, from 47 papers on distribution shifts and 32 papers on phenology change. We assessed the relative importance of two classes of predictors of the rate of change, ecological traits of the responding taxa and methodological approaches for quantifying biological responses. Methodological differences explained 22% of the variation in range shifts, more than the 7.8% of the variation explained by ecological traits. For phenology change, methodological approaches accounted for 4% of the variation in measurements, whereas 8% of the variation was explained by ecological traits. Our ability to predict responses from traits was hindered by poor representation of species from the tropics, where temperature isotherms are moving most rapidly. Thus, the mean rate of distribution change may be underestimated by this and other global syntheses. Our analyses indicate that methodological approaches should be explicitly considered when designing, analysing and comparing results among studies. To improve climate impact studies, we recommend that (1) reanalyses of existing time series state how the existing data sets may limit the inferences about possible climate responses; (2) qualitative comparisons of species' responses across different studies be limited to studies with similar methodological approaches; (3) meta-analyses of climate responses include methodological attributes as covariates; and (4) that new time series be designed to include the detection of early warnings of change or ecologically relevant change. Greater consideration of methodological attributes will improve the accuracy of analyses that seek to quantify the role of climate change in species' distribution and phenology changes.


Assuntos
Mudança Climática , Ecologia/métodos , Organismos Aquáticos , Modelos Teóricos , Dinâmica Populacional , Estações do Ano
5.
Ecol Lett ; 16 Suppl 1: 58-71, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23679010

RESUMO

There is increasing pressure from policymakers for ecologists to generate more detailed 'attribution' analyses aimed at quantitatively estimating relative contributions of different driving forces, including anthropogenic climate change (ACC), to observed biological changes. Here, we argue that this approach is not productive for ecological studies. Global meta-analyses of diverse species, regions and ecosystems have already given us 'very high confidence' [sensu Intergovernmental Panel on Climate Change (IPCC)] that ACC has impacted wild species in a general sense. Further, for well-studied species or systems, synthesis of experiments and models with long-term observations has given us similarly high confidence that they have been impacted by regional climate change (regardless of its cause). However, the role of greenhouse gases in driving these impacts has not been estimated quantitatively. Should this be an ecological research priority? We argue that development of quantitative ecological models for this purpose faces several impediments, particularly the existence of strong, non-additive interactions among different external factors. However, even with current understanding of impacts of global warming, there are myriad climate change adaptation options already developed in the literature that could be, and in fact are being, implemented now.


Assuntos
Mudança Climática , Ecologia , Pesquisa/tendências , Adaptação Fisiológica , Animais , Borboletas/fisiologia , Ecologia/métodos , Aquecimento Global , Efeito Estufa , Modelos Teóricos , Projetos de Pesquisa
6.
Biol Lett ; 8(6): 907-9, 2012 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-22791706

RESUMO

A Marine Climate Impacts Workshop was held from 29 April to 3 May 2012 at the US National Center of Ecological Analysis and Synthesis in Santa Barbara. This workshop was the culmination of a series of six meetings over the past three years, which had brought together 25 experts in climate change ecology, analysis of large datasets, palaeontology, marine ecology and physical oceanography. Aims of these workshops were to produce a global synthesis of climate impacts on marine biota, to identify sensitive habitats and taxa, to inform the current Intergovernmental Panel on Climate Change (IPCC) process, and to strengthen research into ecological impacts of climate change.


Assuntos
Mudança Climática , Ecossistema , Biologia Marinha/métodos , Biologia Marinha/tendências , Coleta de Dados , Interpretação Estatística de Dados , Geografia , Oceanografia/métodos , Oceanos e Mares , Fatores de Tempo
7.
Biol Lett ; 7(3): 324-6, 2011 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-21208943

RESUMO

On 9-13 October 2010 early career scientists from the UK and Australia across marine research fields were given the opportunity to come together in Perth, Australia to discuss the frontiers of marine research and exchange ideas.


Assuntos
Biologia Marinha/tendências , Biologia Marinha/métodos , Oceanos e Mares , Movimentos da Água
8.
Ecology ; 90(5): 1242-54, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19537545

RESUMO

Determination of the pattern of variation in population abundance among spatial scales offers much insight into the potential regulating factors. Here we offer a method of quantifying spatial variance on a range of scales derived by sampling of irregularly spaced sites along complex coastlines. We use it to determine whether the nature of spatial variance depends on the trophic level or the mode of dispersal of the species involved and the role of the complexity of the underlying habitat. A least-cost distance model was used to determine distances by sea between all pairs of sites. Ordination of this distance matrix using multidimensional scaling allowed estimation of variance components with hierarchical ANOVA at nested spatial scales using spatial windows. By repeatedly moving these spatial windows and using a second set of spatial scales, average variance scale functions were derived for 50+ species in the UK rocky intertidal. Variance spectra for most species were well described by the inverse power law (1/fbeta) for noise spectra, with values for the exponent ranging from 0 to 1.1. At higher trophic levels (herbivores and carnivores), those species with planktonic dispersal had significantly higher beta values, indicating greater large- than small-scale variability, as did those on simpler coastlines (southwestern England and Wales vs. western Scotland). Average abundance and proportional incidence of species had the strongest influence on p values, with those of intermediate abundance and incidence having much greater large-scale variance (beta approximately 0.5) than rare or ubiquitous species (beta approximately 0).


Assuntos
Cadeia Alimentar , Animais , Demografia , Eucariotos , Oceanos e Mares , Ondas de Maré , Fatores de Tempo , Reino Unido
10.
Adv Mar Biol ; 56: 151-211, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19895975

RESUMO

Marine turtles are generally viewed as vulnerable to climate change because of the role that temperature plays in the sex determination of embryos, their long life history, long age-to-maturity and their highly migratory nature. Extant species of marine turtles probably arose during the mid-late Jurassic period (180-150 Mya) so have survived past shifts in climate, including glacial periods and warm events and therefore have some capacity for adaptation. The present-day rates of increase of atmospheric greenhouse gas concentrations, and associated temperature changes, are very rapid; the capacity of marine turtles to adapt to this rapid change may be compromised by their relatively long generation times. We consider the evidence and likely consequences of present-day trends of climate change on marine turtles. Impacts are likely to be complex and may be positive as well as negative. For example, rising sea levels and increased storm intensity will negatively impact turtle nesting beaches; however, extreme storms can also lead to coastal accretion. Alteration of wind patterns and ocean currents will have implications for juveniles and adults in the open ocean. Warming temperatures are likely to impact directly all turtle life stages, such as the sex determination of embryos in the nest and growth rates. Warming of 2 degrees C could potentially result in a large shift in sex ratios towards females at many rookeries, although some populations may be resilient to warming if female biases remain within levels where population success is not impaired. Indirectly, climate change is likely to impact turtles through changes in food availability. The highly migratory nature of turtles and their ability to move considerable distances in short periods of time should increase their resilience to climate change. However, any such resilience of marine turtles to climate change is likely to be severely compromised by other anthropogenic influences. Development of coastlines may threaten nesting beaches and reproductive success, and pollution and eutrophication is threatening important coastal foraging habitats for turtles worldwide. Exploitation and bycatch in other fisheries has seriously reduced marine turtle populations. The synergistic effects of other human-induced stressors may seriously reduce the capacity of some turtle populations to adapt to the current rates of climate change. Conservation recommendations to increase the capacity of marine turtle populations to adapt to climate change include increasing population resilience, for example by the use of turtle exclusion devices in fisheries, protection of nesting beaches from the viewpoints of both conservation and coastal management, and increased international conservation efforts to protect turtles in regions where there is high unregulated or illegal fisheries (including turtle harvesting). Increasing research efforts on the critical knowledge gaps of processes influencing population numbers, such as identifying ocean foraging hotspots or the processes that underlie the initiation of nesting migrations and selection of breeding areas, will inform adaptive management in a changing climate.


Assuntos
Adaptação Fisiológica , Mudança Climática , Tartarugas/fisiologia , Migração Animal , Animais , Ecossistema , Feminino , Comportamento de Nidação/fisiologia , Oceanos e Mares , Temperatura , Tempo (Meteorologia)
11.
Trends Ecol Evol ; 33(6): 441-457, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29716742

RESUMO

Climate change is shifting the ranges of species. Simple predictive metrics of range shifts such as climate velocity, that do not require extensive knowledge or data on individual species, could help to guide conservation. We review research on climate velocity, describing the theory underpinning the concept and its assumptions. We highlight how climate velocity has already been applied in conservation-related research, including climate residence time, climate refugia, endemism, historic and projected range shifts, exposure to climate change, and climate connectivity. Finally, we discuss ways to enhance the use of climate velocity in conservation through tailoring it to be more biologically meaningful, informing design of protected areas, conserving ocean biodiversity in 3D, and informing conservation actions.


Assuntos
Biodiversidade , Mudança Climática , Conservação dos Recursos Naturais , Aquecimento Global , Oceanos e Mares
12.
PLoS One ; 8(10): e75514, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24098389

RESUMO

Current evidence of phenological responses to recent climate change is substantially biased towards northern hemisphere temperate regions. Given regional differences in climate change, shifts in phenology will not be uniform across the globe, and conclusions drawn from temperate systems in the northern hemisphere might not be applicable to other regions on the planet. We conduct the largest meta-analysis to date of phenological drivers and trends among southern hemisphere species, assessing 1208 long-term datasets from 89 studies on 347 species. Data were mostly from Australasia (Australia and New Zealand), South America and the Antarctic/subantarctic, and focused primarily on plants and birds. This meta-analysis shows an advance in the timing of spring events (with a strong Australian data bias), although substantial differences in trends were apparent among taxonomic groups and regions. When only statistically significant trends were considered, 82% of terrestrial datasets and 42% of marine datasets demonstrated an advance in phenology. Temperature was most frequently identified as the primary driver of phenological changes; however, in many studies it was the only climate variable considered. When precipitation was examined, it often played a key role but, in contrast with temperature, the direction of phenological shifts in response to precipitation variation was difficult to predict a priori. We discuss how phenological information can inform the adaptive capacity of species, their resilience, and constraints on autonomous adaptation. We also highlight serious weaknesses in past and current data collection and analyses at large regional scales (with very few studies in the tropics or from Africa) and dramatic taxonomic biases. If accurate predictions regarding the general effects of climate change on the biology of organisms are to be made, data collection policies focussing on targeting data-deficient regions and taxa need to be financially and logistically supported.


Assuntos
Planeta Terra , Fenômenos Ecológicos e Ambientais , Animais , Organismos Aquáticos , Classificação , Clima , Mudança Climática , Estações do Ano , Estatística como Assunto
13.
Curr Biol ; 21(21): 1828-32, 2011 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-22036178

RESUMO

In recent decades, global climate change [1] has caused profound biological changes across the planet [2-6]. However, there is a great disparity in the strength of evidence among different ecosystems and between hemispheres: changes on land have been well documented through long-term studies, but similar direct evidence for impacts of warming is virtually absent from the oceans [3, 7], where only a few studies on individual species of intertidal invertebrates, plankton, and commercially important fish in the North Atlantic and North Pacific exist. This disparity of evidence is precarious for biological conservation because of the critical role of the marine realm in regulating the Earth's environmental and ecological functions, and the associated socioeconomic well-being of humans [8]. We interrogated a database of >20,000 herbarium records of macroalgae collected in Australia since the 1940s and documented changes in communities and geographical distribution limits in both the Indian and Pacific Oceans, consistent with rapid warming over the past five decades [9, 10]. We show that continued warming might drive potentially hundreds of species toward and beyond the edge of the Australian continent where sustained retreat is impossible. The potential for global extinctions is profound considering the many endemic seaweeds and seaweed-dependent marine organisms in temperate Australia.


Assuntos
Mudança Climática , Ecossistema , Alga Marinha/fisiologia , Organismos Aquáticos , Austrália , Bases de Dados Factuais , Oceano Índico , Oceano Pacífico
14.
Science ; 334(6056): 652-5, 2011 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-22053045

RESUMO

Climate change challenges organisms to adapt or move to track changes in environments in space and time. We used two measures of thermal shifts from analyses of global temperatures over the past 50 years to describe the pace of climate change that species should track: the velocity of climate change (geographic shifts of isotherms over time) and the shift in seasonal timing of temperatures. Both measures are higher in the ocean than on land at some latitudes, despite slower ocean warming. These indices give a complex mosaic of predicted range shifts and phenology changes that deviate from simple poleward migration and earlier springs or later falls. They also emphasize potential conservation concerns, because areas of high marine biodiversity often have greater velocities of climate change and seasonal shifts.


Assuntos
Mudança Climática , Ecossistema , Biodiversidade , Oceanos e Mares , Estações do Ano
15.
Ecology ; 89(11): 3138-3149, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31766801

RESUMO

Biotic interactions will modulate species' responses to climate change. Many approaches to predicting the impacts of climate change on biodiversity so far have been based purely on a climate envelope approach and have not considered direct and indirect species interactions. Using a long-term observational data set (>30 years) of competing intertidal barnacle species, we built a hierarchy of age-structured two-taxa population models (Semibalanus balanoides vs. Chthamalus montagui and C. stellatus combined as one taxon) to test if the presence of a dominant competitor can mediate climatic influence on the subordinate species. Models were parameterized using data from populations on the south coast of southwest England and verified by hindcasting using independent north coast population data. Recruitment of the dominant competitor, S. balanoides, is driven by temperature. The mechanisms of competition explored included simple space preemption and temperature-driven interference competition. The results indicate that interspecific competition between juvenile barnacles is important in regulating chthamalid density but not that of the dominant competitor S. balanoides. Simulations were carried out using alternative future climate scenarios to predict barnacle population abundance over the next century. Under all emission scenarios, the cold-water S. balanoides is predicted to virtually disappear from southwest England by the 2050s, leading to the competitive release of Chthamalus throughout the entire region and thereby substantially increasing its abundance and occupied habitat (by increasing vertical range on the shore). Our results demonstrate that climate change can profoundly affect the abundance and distribution of species through both the direct effects of temperature on survival, and also by altering important negative interactions through shifting competitive balances and essentially removing dominant competitors or predators. Climate change impacts on organisms are unlikely to lead only to straightforward, easily predictable changes in population size and distribution. The complex, indirect effects of climate change need to be taken into account if we are to accurately forecast the long-term effects of global warming.

17.
Science ; 322(5905): 1188, 2008 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-19023065
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA