Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Pathol ; 264(2): 212-227, 2024 10.
Artigo em Inglês | MEDLINE | ID: mdl-39177649

RESUMO

WT1 encodes a podocyte transcription factor whose variants can cause an untreatable glomerular disease in early childhood. Although WT1 regulates many podocyte genes, it is poorly understood which of them are initiators in disease and how they subsequently influence other cell-types in the glomerulus. We hypothesised that this could be resolved using single-cell RNA sequencing (scRNA-seq) and ligand-receptor analysis to profile glomerular cell-cell communication during the early stages of disease in mice harbouring an orthologous human mutation in WT1 (Wt1R394W/+). Podocytes were the most dysregulated cell-type in the early stages of Wt1R394W/+ disease, with disrupted angiogenic signalling between podocytes and the endothelium, including the significant downregulation of transcripts for the vascular factors Vegfa and Nrp1. These signalling changes preceded glomerular endothelial cell loss in advancing disease, a feature also observed in biopsy samples from human WT1 glomerulopathies. Addition of conditioned medium from murine Wt1R394W/+ primary podocytes to wild-type glomerular endothelial cells resulted in impaired endothelial looping and reduced vascular complexity. Despite the loss of key angiogenic molecules in Wt1R394W/+ podocytes, the pro-vascular molecule adrenomedullin was upregulated in Wt1R394W/+ podocytes and plasma and its further administration was able to rescue the impaired looping observed when glomerular endothelium was exposed to Wt1R394W/+ podocyte medium. In comparative analyses, adrenomedullin upregulation was part of a common injury signature across multiple murine and human glomerular disease datasets, whilst other gene changes were unique to WT1 disease. Collectively, our study describes a novel role for altered angiogenic signalling in the initiation of WT1 glomerulopathy. We also identify adrenomedullin as a proangiogenic factor, which despite being upregulated in early injury, offers an insufficient protective response due to the wider milieu of dampened vascular signalling that results in endothelial cell loss in later disease. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Glomérulos Renais , Podócitos , Transdução de Sinais , Análise de Célula Única , Transcriptoma , Proteínas WT1 , Animais , Podócitos/metabolismo , Podócitos/patologia , Proteínas WT1/metabolismo , Proteínas WT1/genética , Humanos , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Glomérulos Renais/irrigação sanguínea , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Camundongos , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Modelos Animais de Doenças , Mutação , Nefropatias/genética , Nefropatias/metabolismo , Nefropatias/patologia , Adrenomedulina/genética , Adrenomedulina/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Comunicação Celular , Células Cultivadas
2.
Basic Res Cardiol ; 119(5): 733-749, 2024 10.
Artigo em Inglês | MEDLINE | ID: mdl-39088085

RESUMO

Hyperglycaemia is common during acute coronary syndromes (ACS) irrespective of diabetic status and portends excess infarct size and mortality, but the mechanisms underlying this effect are poorly understood. We hypothesized that sodium/glucose linked transporter-1 (SGLT1) might contribute to the effect of high-glucose during ACS and examined this using an ex-vivo rodent heart model of ischaemia-reperfusion injury. Langendorff-perfused rat hearts were subjected to 35 min ischemia and 2 h reperfusion, with variable glucose and reciprocal mannitol given during reperfusion in the presence of pharmacological inhibitors of SGLT1. Myocardial SGLT1 expression was determined in rat by rtPCR, RNAscope and immunohistochemistry, as well as in human by single-cell transcriptomic analysis. High glucose in non-diabetic rat heart exacerbated reperfusion injury, significantly increasing infarct size from 45 ± 3 to 65 ± 4% at 11-22 mmol/L glucose, respectively (p < 0.01), an association absent in diabetic heart (32 ± 1-37 ± 5%, p = NS). Rat heart expressed SGLT1 RNA and protein in vascular endothelium and cardiomyocytes, with similar expression found in human myocardium by single-nucleus RNA-sequencing. Rat SGLT1 expression was significantly reduced in diabetic versus non-diabetic heart (0.608 ± 0.08 compared with 1.116 ± 0.13 probe/nuclei, p < 0.01). Pharmacological inhibitors phlorizin, canagliflozin or mizagliflozoin in non-diabetic heart revealed that blockade of SGLT1 but not SGLT2, abrogated glucose-mediated excess reperfusion injury. Elevated glucose is injurious to the rat heart during reperfusion, exacerbating myocardial infarction in non-diabetic heart, whereas the diabetic heart is resistant to raised glucose, a finding which may be explained by lower myocardial SGLT1 expression. SGLT1 is expressed in vascular endothelium and cardiomyocytes and inhibiting SGLT1 abrogates excess glucose-mediated infarction. These data highlight SGLT1 as a potential clinical translational target to improve morbidity/mortality outcomes in hyperglycemic ACS patients.


Assuntos
Glucose , Traumatismo por Reperfusão Miocárdica , Transportador 1 de Glucose-Sódio , Animais , Transportador 1 de Glucose-Sódio/metabolismo , Transportador 1 de Glucose-Sódio/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Masculino , Glucose/metabolismo , Humanos , Miocárdio/metabolismo , Miocárdio/patologia , Modelos Animais de Doenças , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ratos Sprague-Dawley , Ratos , Preparação de Coração Isolado , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Hiperglicemia/metabolismo
3.
Physiol Rep ; 12(13): e16129, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38955668

RESUMO

Cardiotrophin-1 (CT-1), a member of the interleukin (IL)-6 cytokine family, has renoprotective effects in mouse models of acute kidney disease and tubulointerstitial fibrosis, but its role in glomerular disease is unknown. To address this, we used the mouse model of nephrotoxic nephritis to test the hypothesis that CT-1 also has a protective role in immune-mediated glomerular disease. Using immunohistochemistry and analysis of single-cell RNA-sequencing data of isolated glomeruli, we demonstrate that CT-1 is expressed in the glomerulus in male mice, predominantly in parietal epithelial cells and is downregulated in mice with nephrotoxic nephritis. Furthermore, analysis of data from patients revealed that human glomerular disease is also associated with reduced glomerular CT-1 transcript levels. In male mice with nephrotoxic nephritis and established proteinuria, administration of CT-1 resulted in reduced albuminuria, prevented podocyte loss, and sustained plasma creatinine, compared with mice administered saline. CT-1 treatment also reduced fibrosis in the kidney cortex, peri-glomerular macrophage accumulation and the kidney levels of the pro-inflammatory mediator complement component 5a. In conclusion, CT-1 intervention therapy delays the progression of glomerular disease in mice by preserving kidney function and inhibiting renal inflammation and fibrosis.


Assuntos
Citocinas , Glomérulos Renais , Camundongos Endogâmicos C57BL , Animais , Masculino , Citocinas/metabolismo , Citocinas/genética , Camundongos , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Modelos Animais de Doenças , Humanos , Fibrose , Glomerulonefrite/metabolismo , Glomerulonefrite/patologia , Glomerulonefrite/tratamento farmacológico
4.
Nat Commun ; 15(1): 1452, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365780

RESUMO

The development of vascular networks in microfluidic chips is crucial for the long-term culture of three-dimensional cell aggregates such as spheroids, organoids, tumoroids, or tissue explants. Despite rapid advancement in microvascular network systems and organoid technologies, vascularizing organoids-on-chips remains a challenge in tissue engineering. Most existing microfluidic devices poorly reflect the complexity of in vivo flows and require complex technical set-ups. Considering these constraints, we develop a platform to establish and monitor the formation of endothelial networks around mesenchymal and pancreatic islet spheroids, as well as blood vessel organoids generated from pluripotent stem cells, cultured for up to 30 days on-chip. We show that these networks establish functional connections with the endothelium-rich spheroids and vascular organoids, as they successfully provide intravascular perfusion to these structures. We find that organoid growth, maturation, and function are enhanced when cultured on-chip using our vascularization method. This microphysiological system represents a viable organ-on-chip model to vascularize diverse biological 3D tissues and sets the stage to establish organoid perfusions using advanced microfluidics.


Assuntos
Ilhotas Pancreáticas , Microfluídica , Organoides , Engenharia Tecidual/métodos , Endotélio , Ilhotas Pancreáticas/irrigação sanguínea
5.
Sci Rep ; 12(1): 12172, 2022 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-35842494

RESUMO

Plasma ultrafiltration in the kidney occurs across glomerular capillaries, which are surrounded by epithelial cells called podocytes. Podocytes have a unique shape maintained by a complex cytoskeleton, which becomes disrupted in glomerular disease resulting in defective filtration and albuminuria. Lack of endogenous thymosin ß4 (TB4), an actin sequestering peptide, exacerbates glomerular injury and disrupts the organisation of the podocyte actin cytoskeleton, however, the potential of exogenous TB4 therapy to improve podocyte injury is unknown. Here, we have used Adriamycin (ADR), a toxin which injures podocytes and damages the glomerular filtration barrier leading to albuminuria in mice. Through interrogating single-cell RNA-sequencing data of isolated glomeruli we demonstrate that ADR injury results in reduced levels of podocyte TB4. Administration of an adeno-associated viral vector encoding TB4 increased the circulating level of TB4 and prevented ADR-induced podocyte loss and albuminuria. ADR injury was associated with disorganisation of the podocyte actin cytoskeleton in vitro, which was ameliorated by treatment with exogenous TB4. Collectively, we propose that systemic gene therapy with TB4 prevents podocyte injury and maintains glomerular filtration via protection of the podocyte cytoskeleton thus presenting a novel treatment strategy for glomerular disease.


Assuntos
Nefropatias , Podócitos , Albuminúria , Animais , Células Cultivadas , Doxorrubicina , Terapia Genética , Glomérulos Renais , Camundongos , Timosina
6.
Sci Rep ; 10(1): 13763, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32792680

RESUMO

Mutations in the SNX14 gene cause spinocerebellar ataxia, autosomal recessive 20 (SCAR20) in both humans and dogs. Studies implicating the phenotypic consequences of SNX14 mutations to be consequences of subcellular disruption to autophagy and lipid metabolism have been limited to in vitro investigation of patient-derived dermal fibroblasts, laboratory engineered cell lines and developmental analysis of zebrafish morphants. SNX14 homologues Snz (Drosophila) and Mdm1 (yeast) have also been conducted, demonstrated an important biochemical role during lipid biogenesis. In this study we report the effect of loss of SNX14 in mice, which resulted in embryonic lethality around mid-gestation due to placental pathology that involves severe disruption to syncytiotrophoblast cell differentiation. In contrast to other vertebrates, zebrafish carrying a homozygous, maternal zygotic snx14 genetic loss-of-function mutation were both viable and anatomically normal. Whilst no obvious behavioural effects were observed, elevated levels of neutral lipids and phospholipids resemble previously reported effects on lipid homeostasis in other species. The biochemical role of SNX14 therefore appears largely conserved through evolution while the consequences of loss of function varies between species. Mouse and zebrafish models therefore provide valuable insights into the functional importance of SNX14 with distinct opportunities for investigating its cellular and metabolic function in vivo.


Assuntos
Viabilidade Fetal/genética , Metabolismo dos Lipídeos/genética , Placenta/anormalidades , Nexinas de Classificação/genética , Ataxias Espinocerebelares/genética , Animais , Animais Geneticamente Modificados , Diferenciação Celular/genética , Desenvolvimento Embrionário/genética , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Fenótipo , Fosfolipídeos/sangue , Gravidez , Trofoblastos/citologia , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA