Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Mol Cell ; 80(6): 996-1012.e9, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33147438

RESUMO

Reactive aldehydes arise as by-products of metabolism and are normally cleared by multiple families of enzymes. We find that mice lacking two aldehyde detoxifying enzymes, mitochondrial ALDH2 and cytoplasmic ADH5, have greatly shortened lifespans and develop leukemia. Hematopoiesis is disrupted profoundly, with a reduction of hematopoietic stem cells and common lymphoid progenitors causing a severely depleted acquired immune system. We show that formaldehyde is a common substrate of ALDH2 and ADH5 and establish methods to quantify elevated blood formaldehyde and formaldehyde-DNA adducts in tissues. Bone-marrow-derived progenitors actively engage DNA repair but also imprint a formaldehyde-driven mutation signature similar to aging-associated human cancer mutation signatures. Furthermore, we identify analogous genetic defects in children causing a previously uncharacterized inherited bone marrow failure and pre-leukemic syndrome. Endogenous formaldehyde clearance alone is therefore critical for hematopoiesis and in limiting mutagenesis in somatic tissues.


Assuntos
Álcool Desidrogenase/genética , Aldeído-Desidrogenase Mitocondrial/genética , Formaldeído/sangue , Leucemia/genética , Adolescente , Aldeídos/sangue , Animais , Criança , Pré-Escolar , Adutos de DNA/genética , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Feminino , Formaldeído/toxicidade , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Humanos , Lactente , Leucemia/sangue , Leucemia/patologia , Masculino , Camundongos , Mutação/genética , Especificidade por Substrato
2.
Nucleic Acids Res ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38894680

RESUMO

Formaldehyde (FA) is a recognized environmental and metabolic toxin implicated in cancer development and aging. Inherited mutations in the FA-detoxifying enzymes ADH5 and ALDH2 genes lead to FA overload in the severe multisystem AMeD syndrome. FA accumulation causes genome damage including DNA-protein-, inter- and intra-strand crosslinks and oxidative lesions. However, the influence of distinct DNA repair systems on organismal FA resistance remains elusive. We have here investigated the consequence of a range of DNA repair mutants in a model of endogenous FA overload generated by downregulating the orthologs of human ADH5 and ALDH2 in C. elegans. We have focused on the distinct components of nucleotide excision repair (NER) during developmental growth, reproduction and aging. Our results reveal three distinct modes of repair of FA-induced DNA damage: Transcription-coupled repair (TCR) operating NER-independently during developmental growth or through NER during adulthood, and, in concert with global-genome (GG-) NER, in the germline and early embryonic development. Additionally, we show that the Cockayne syndrome B (CSB) factor is involved in the resolution of FA-induced DNA-protein crosslinks, and that the antioxidant and FA quencher N-acetyl-l-cysteine (NAC) reverses the sensitivity of detoxification and DNA repair defects during development, suggesting a therapeutic intervention to revert FA-pathogenic consequences.

3.
Nature ; 548(7669): 549-554, 2017 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-28813411

RESUMO

The folate-driven one-carbon (1C) cycle is a fundamental metabolic hub in cells that enables the synthesis of nucleotides and amino acids and epigenetic modifications. This cycle might also release formaldehyde, a potent protein and DNA crosslinking agent that organisms produce in substantial quantities. Here we show that supplementation with tetrahydrofolate, the essential cofactor of this cycle, and other oxidation-prone folate derivatives kills human, mouse and chicken cells that cannot detoxify formaldehyde or that lack DNA crosslink repair. Notably, formaldehyde is generated from oxidative decomposition of the folate backbone. Furthermore, we find that formaldehyde detoxification in human cells generates formate, and thereby promotes nucleotide synthesis. This supply of 1C units is sufficient to sustain the growth of cells that are unable to use serine, which is the predominant source of 1C units. These findings identify an unexpected source of formaldehyde and, more generally, indicate that the detoxification of this ubiquitous endogenous genotoxin creates a benign 1C unit that can sustain essential metabolism.


Assuntos
Carbono/metabolismo , Ácido Fólico/química , Ácido Fólico/metabolismo , Formaldeído/química , Formaldeído/metabolismo , Redes e Vias Metabólicas , Mutagênicos/química , Mutagênicos/metabolismo , Álcool Desidrogenase/metabolismo , Animais , Carbono/deficiência , Linhagem Celular , Galinhas , Coenzimas/metabolismo , Reagentes de Ligações Cruzadas/metabolismo , Dano ao DNA , Reparo do DNA , Humanos , Inativação Metabólica , Camundongos , Nucleotídeos/biossíntese , Oxirredução , Serina/química , Serina/metabolismo , Tetra-Hidrofolatos/metabolismo
5.
Mol Cell ; 60(1): 177-88, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26412304

RESUMO

Endogenous formaldehyde is produced by numerous biochemical pathways fundamental to life, and it can crosslink both DNA and proteins. However, the consequences of its accumulation are unclear. Here we show that endogenous formaldehyde is removed by the enzyme alcohol dehydrogenase 5 (ADH5/GSNOR), and Adh5(-/-) mice therefore accumulate formaldehyde adducts in DNA. The repair of this damage is mediated by FANCD2, a DNA crosslink repair protein. Adh5(-/-)Fancd2(-/-) mice reveal an essential requirement for these protection mechanisms in hematopoietic stem cells (HSCs), leading to their depletion and precipitating bone marrow failure. More widespread formaldehyde-induced DNA damage also causes karyomegaly and dysfunction of hepatocytes and nephrons. Bone marrow transplantation not only rescued hematopoiesis but, surprisingly, also preserved nephron function. Nevertheless, all of these animals eventually developed fatal malignancies. Formaldehyde is therefore an important source of endogenous DNA damage that is counteracted in mammals by a conserved protection mechanism.


Assuntos
Álcool Desidrogenase/metabolismo , Carcinógenos/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Formaldeído/metabolismo , Mutagênicos/metabolismo , Álcool Desidrogenase/genética , Animais , Células Cultivadas , Adutos de DNA/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Técnicas de Inativação de Genes , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Rim/metabolismo , Rim/patologia , Fígado/metabolismo , Fígado/patologia , Camundongos
6.
Proc Natl Acad Sci U S A ; 113(41): 11573-11578, 2016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27679850

RESUMO

Copper homeostasis is essential for bacterial pathogen fitness and infection, and has been the focus of a number of recent studies. In Salmonella, envelope protection against copper overload and macrophage survival depends on CueP, a major copper-binding protein in the periplasm. This protein is also required to deliver the metal ion to the Cu/Zn superoxide dismutase SodCII. The Salmonella-specific CueP-coding gene was originally identified as part of the Cue regulon under the transcriptional control of the cytoplasmic copper sensor CueR, but its expression differs from the rest of CueR-regulated genes. Here we show that cueP expression is controlled by the concerted action of CueR, which detects the presence of copper in the cytoplasm, and by CpxR/CpxA, which monitors envelope stress. Copper-activated CueR is necessary for the appropriate spatial arrangement of the -10 and -35 elements of the cueP promoter, and CpxR is essential to recruit the RNA polymerase. The integration of two ancestral sensory systems-CueR, which provides signal specificity, and CpxR/CpxA, which detects stress in the bacterial envelope-restricts the expression of this periplasmic copper resistance protein solely to cells encountering surplus copper that disturbs envelope homeostasis, emulating the role of the CusR/CusS regulatory system present in other enteric bacteria.


Assuntos
Cobre/metabolismo , Regulação Bacteriana da Expressão Gênica , Homeostase , Periplasma/metabolismo , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Transdução de Sinais , Transcrição Gênica , Proteínas de Bactérias/metabolismo , Sequência de Bases , Sítios de Ligação , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Modelos Moleculares , Regiões Operadoras Genéticas/genética , Periplasma/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Filogenia , Cianeto de Potássio/farmacologia , Regiões Promotoras Genéticas/genética , Regulon/genética , Salmonella typhimurium/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico/genética , Transcrição Gênica/efeitos dos fármacos
7.
J Cell Sci ; 129(24): 4449-4454, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27872153

RESUMO

As time passes, mutations accumulate in the genomes of all living organisms. These changes promote genetic diversity, but also precipitate ageing and the initiation of cancer. Food is a common source of mutagens, but little is known about how nutritional factors cause lasting genetic changes in the consuming organism. Here, we describe an unusual genetic interaction between DNA repair in the unicellular amoeba Dictyostelium discoideum and its natural bacterial food source. We found that Dictyostelium deficient in the DNA repair nuclease Xpf (xpf-) display a severe and specific growth defect when feeding on bacteria. Despite being proficient in the phagocytosis and digestion of bacteria, over time, xpf- Dictyostelium feeding on bacteria cease to grow and in many instances die. The Xpf nuclease activity is required for sustained growth using a bacterial food source. Furthermore, the ingestion of this food source leads to a striking accumulation of mutations in the genome of xpf- Dictyostelium This work therefore establishes Dictyostelium as a model genetic system to dissect nutritional genotoxicity, providing insight into how phagocytosis can induce mutagenesis and compromise survival fitness.


Assuntos
Dictyostelium/metabolismo , Mutagênese , Fagocitose , Proteínas de Protozoários/metabolismo , Sequência de Aminoácidos , Reparo do DNA/genética , Dictyostelium/citologia , Dictyostelium/crescimento & desenvolvimento , Fagocitose/genética , Proteínas de Protozoários/química , Proteínas de Protozoários/genética
8.
J Am Chem Soc ; 139(15): 5338-5350, 2017 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-28375637

RESUMO

Formaldehyde (FA) is a reactive signaling molecule that is continuously produced through a number of central biological pathways spanning epigenetics to one-carbon metabolism. On the other hand, aberrant, elevated levels of FA are implicated in disease states ranging from asthma to neurodegenerative disorders. In this context, fluorescence-based probes for FA imaging are emerging as potentially powerful chemical tools to help disentangle the complexities of FA homeostasis and its physiological and pathological contributions. Currently available FA indicators require direct modification of the fluorophore backbone through complex synthetic considerations to enable FA detection, often limiting the generalization of designs to other fluorophore classes. To address this challenge, we now present the rational, iterative development of a general reaction-based trigger utilizing 2-aza-Cope reactivity for selective and sensitive detection of FA in living systems. Specifically, we developed a homoallylamine functionality that can undergo a subsequent self-immolative ß-elimination, creating a FA-responsive trigger that is capable of masking a phenol on a fluorophore or any other potential chemical scaffold for related imaging and/or therapeutic applications. We demonstrate the utility of this trigger by creating a series of fluorescent probes for FA with excitation and emission wavelengths that span the UV to visible spectral regions through caging of a variety of dye units. In particular, Formaldehyde Probe 573 (FAP573), based on a resorufin scaffold, is the most red-shifted and FA sensitive in this series in terms of signal-to-noise responses and enables identification of alcohol dehydrogenase 5 (ADH5) as an enzyme that regulates FA metabolism in living cells. The results provide a starting point for the broader use of 2-aza-Cope reactivity for probing and manipulating FA biology.


Assuntos
Compostos Aza/química , Formaldeído/análise , Formaldeído/química , Imagem Óptica , Sobrevivência Celular , Células HEK293 , Humanos , Estrutura Molecular
9.
Microbiology (Reading) ; 160(Pt 8): 1659-1669, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24858080

RESUMO

Copper and zinc are essential metal ions, but toxic in excess. Bacteria have evolved different strategies to control their intracellular concentrations, ensuring proper supply while avoiding toxicity, including the induction of metal-specific as well as non-specific mechanisms. We compared the transcriptional profiles of Salmonella Typhimurium after exposure to either copper or zinc ions in both rich and minimal media. Besides metal-specific regulatory networks many global stress-response pathways react to an excess of either of these metal ions. Copper excess affects both zinc and iron homeostasis by inducing transcription of these metal-specific regulons. In addition to the control of zinc-specific regulons, zinc excess affects the Cpx regulon and the σ(E) envelope-stress responses. Finally, novel metal-specific upregulated genes were detected including a new copper-detoxification pathway that involves the siderophore enterobactin and the outer-membrane protein TolC. This work sheds light onto the transcriptional landscape of Salmonella after copper or zinc overload, and discloses a new mechanism of copper detoxification.


Assuntos
Proteínas de Bactérias/genética , Cobre/metabolismo , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Zinco/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Fúngica da Expressão Gênica , Genoma Bacteriano , Regulon , Transcrição Gênica
10.
Aging Cell ; : e14258, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012326

RESUMO

Senescent cells produce a Senescence-Associated Secretory Phenotype (SASP) that involves factors with diverse and sometimes contradictory activities. One key SASP factor, interleukin-6 (IL-6), has the potential to amplify cellular senescence in the SASP-producing cells in an autocrine action, while simultaneously inducing proliferation in the neighboring cells. The underlying mechanisms for the contrasting actions remain unclear. We found that the senescence action does not involve IL-6 secretion nor the interaction with the receptor expressed in the membrane but is amplified through an intracrine mechanism. IL-6 sustains intracrine senescence interacting with the intracellular IL-6 receptor located in anterograde traffic specialized structures, with cytosolic DNA, cGAS-STING, and NFκB activation. This pathway triggered by intracellular IL-6 significantly contributes to cell-autonomous induction of senescence and impacts in tumor growth control. Inactivation of IL-6 in somatotrophic senescent cells transforms them into strongly tumorigenic in NOD/SCID mice, while re-expression of IL-6 restores senescence control of tumor growth. The intracrine senescent IL-6 pathway is further evidenced in three human cellular models of therapy-induced senescence. The compartmentalization of the intracellular signaling, in contrast to the paracrine tumorigenic action, provides a pathway for IL-6 to sustain cell-autonomous senescent cells, driving the SASP, and opens new avenues for clinical consideration to senescence-based therapies.

11.
Methods Mol Biol ; 2675: 117-132, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37258760

RESUMO

Glutathione (GSH) is one of the main antioxidant molecules present in cells. It harbors a thiol group responsible for sustaining cellular redox homeostasis. This moiety can react with cellular electrophiles such as formaldehyde yielding the compound S-hydroxymethyl-GSH (HSMGSH). HSMGSH is the substrate of the enzyme alcohol dehydrogenase 5 (ADH5) and thus a key intermediate in formaldehyde metabolism. In this work, we describe a method for the chemical synthesis of HSMGSH and a pipeline to identify this compound in complex cell extracts by means of ultra-high-performance liquid chromatography coupled to high-resolution spectrometry (UHPLC-HRMS). This method also allows determining GSH and oxidized disulfide (GSSG) in the same samples, thus providing broad information about formaldehyde-GSH metabolism.


Assuntos
Antioxidantes , Glutationa , Humanos , Dissulfeto de Glutationa/química , Cromatografia Líquida de Alta Pressão/métodos , Glutationa/metabolismo , Antioxidantes/metabolismo , Compostos de Sulfidrila , Oxirredução
12.
Science ; 382(6670): eabp9201, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37917677

RESUMO

One-carbon metabolism is an essential branch of cellular metabolism that intersects with epigenetic regulation. In this work, we show how formaldehyde (FA), a one-carbon unit derived from both endogenous sources and environmental exposure, regulates one-carbon metabolism by inhibiting the biosynthesis of S-adenosylmethionine (SAM), the major methyl donor in cells. FA reacts with privileged, hyperreactive cysteine sites in the proteome, including Cys120 in S-adenosylmethionine synthase isoform type-1 (MAT1A). FA exposure inhibited MAT1A activity and decreased SAM production with MAT-isoform specificity. A genetic mouse model of chronic FA overload showed a decrease n SAM and in methylation on selected histones and genes. Epigenetic and transcriptional regulation of Mat1a and related genes function as compensatory mechanisms for FA-dependent SAM depletion, revealing a biochemical feedback cycle between FA and SAM one-carbon units.


Assuntos
Carbono , Cisteína , Epigênese Genética , Formaldeído , Metionina Adenosiltransferase , S-Adenosilmetionina , Animais , Camundongos , Carbono/metabolismo , Epigênese Genética/efeitos dos fármacos , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/metabolismo , S-Adenosilmetionina/antagonistas & inibidores , S-Adenosilmetionina/metabolismo , Formaldeído/metabolismo , Formaldeído/toxicidade , Exposição Ambiental , Metionina Adenosiltransferase/antagonistas & inibidores , Metionina Adenosiltransferase/genética , Metionina Adenosiltransferase/metabolismo , Cisteína/metabolismo , Humanos , Células Hep G2
13.
Redox Biol ; 55: 102408, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35944469

RESUMO

Ferroptosis is a form of cell death triggered by phospholipid hydroperoxides (PLOOH) generated from the iron-dependent oxidation of polyunsaturated fatty acids (PUFAs). To prevent ferroptosis, cells rely on the antioxidant glutathione (GSH), which serves as cofactor of the glutathione peroxidase 4 (GPX4) for the neutralization of PLOOHs. Some cancer cells can also limit ferroptosis through a GSH-independent axis, centered mainly on the ferroptosis suppressor protein 1 (FSP1). The significance of these two anti-ferroptosis pathways is still poorly understood in cancers from hematopoietic origin. Here, we report that blood-derived cancer cells are selectively sensitive to compounds that block the GSH-dependent anti-ferroptosis axis. In T- and B- acute lymphoblastic leukemia (ALL) cell lines and patient biopsies, the promoter of the gene coding for FSP1 is hypermethylated, silencing the expression of FSP1 and creating a selective dependency on GSH-centered anti-ferroptosis defenses. In-trans expression of FSP1 increases the resistance of leukemic cells to compounds targeting the GSH-dependent anti-ferroptosis pathway. FSP1 over-expression also favors ALL-tumor growth in an in vivo chick chorioallantoic membrane (CAM) model. Hence, our results reveal a metabolic vulnerability of ALL that might be of therapeutic interest.

14.
Nat Commun ; 13(1): 745, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35136057

RESUMO

Formaldehyde (FA) is a ubiquitous endogenous and environmental metabolite that is thought to exert cytotoxicity through DNA and DNA-protein crosslinking, likely contributing to the onset of the human DNA repair condition Fanconi Anaemia. Mutations in the genes coding for FA detoxifying enzymes underlie a human inherited bone marrow failure syndrome (IBMFS), even in the presence of functional DNA repair, raising the question of whether FA causes relevant cellular damage beyond genotoxicity. Here, we report that FA triggers cellular redox imbalance in human cells and in Caenorhabditis elegans. Mechanistically, FA reacts with the redox-active thiol group of glutathione (GSH), altering the GSH:GSSG ratio and causing oxidative stress. FA cytotoxicity is prevented by the enzyme alcohol dehydrogenase 5 (ADH5/GSNOR), which metabolizes FA-GSH products, lastly yielding reduced GSH. Furthermore, we show that GSH synthesis protects human cells from FA, indicating an active role of GSH in preventing FA toxicity. These findings might be relevant for patients carrying mutations in FA-detoxification systems and could suggest therapeutic benefits from thiol-rich antioxidants like N-acetyl-L-cysteine.


Assuntos
Aldeído Oxirredutases/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Anemia de Fanconi/metabolismo , Formaldeído/toxicidade , Glutationa/metabolismo , Aldeído Oxirredutases/genética , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Dano ao DNA , Modelos Animais de Doenças , Anemia de Fanconi/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Formaldeído/metabolismo , Técnicas de Inativação de Genes , Células HCT116 , Humanos , Oxirredução , Estresse Oxidativo
15.
Redox Biol ; 40: 101850, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33418141

RESUMO

One-carbon metabolism is a central metabolic hub that provides one-carbon units for essential biosynthetic reactions and for writing epigenetics marks. The leading role in this hub is performed by the one-carbon carrier tetrahydrofolate (THF), which accepts formaldehyde usually from serine generating one-carbon THF intermediates in a set of reactions known as the folate or one-carbon cycle. THF derivatives can feed one-carbon units into purine and thymidine synthesis, and into the methionine cycle that produces the universal methyl-donor S-adenosylmethionine (AdoMet). AdoMet delivers methyl groups for epigenetic methylations and it is metabolized to homocysteine (Hcy), which can enter the transsulfuration pathway for the production of cysteine and lastly glutathione (GSH), the main cellular antioxidant. This vital role of THF comes to an expense. THF and other folate derivatives are susceptible to oxidative breakdown releasing formaldehyde, which can damage DNA -a consequence prevented by the Fanconi Anaemia DNA repair pathway. Epigenetic demethylations catalysed by lysine-specific demethylases (LSD) and Jumonji histone demethylases can also release formaldehyde, constituting a potential threat for genome integrity. In mammals, the toxicity of formaldehyde is limited by a metabolic route centred on the enzyme alcohol dehydrogenase 5 (ADH5/GSNOR), which oxidizes formaldehyde conjugated to GSH, lastly generating formate. Remarkably, this formate can be a significant source of one-carbon units, thus defining a formaldehyde cycle that likely restricts the toxicity of one-carbon metabolism and epigenetic demethylations. This work describes recent advances in one-carbon metabolism and epigenetics, focusing on the steps that involve formaldehyde flux and that might lead to cytotoxicity affecting human health.


Assuntos
Epigênese Genética , Lisina , Animais , Carbono/metabolismo , Ácido Fólico , Humanos , Serina/metabolismo
16.
J Bacteriol ; 192(23): 6287-90, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20889758

RESUMO

Salmonella ΔcuiD strains form mucoid colonies on copper-containing solid media. We show here that this multiaggregative behavior is caused by the Rcs-dependent induction of colanic acid extracellular polysaccharide. Deletion of cps operon genes in a ΔcuiD strain increased the sensitivity to copper, indicating a role for colanic acid in copper resistance.


Assuntos
Aderência Bacteriana , Vias Biossintéticas/genética , Cobre/toxicidade , Polissacarídeos Bacterianos/biossíntese , Salmonella/efeitos dos fármacos , Proteínas de Bactérias/genética , Meios de Cultura/química , Óperon , Polissacarídeos/biossíntese , Salmonella/crescimento & desenvolvimento , Salmonella/metabolismo , Deleção de Sequência
17.
Mol Microbiol ; 73(2): 212-25, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19538445

RESUMO

Bacteria have evolved different systems to tightly control both cytosolic and envelope copper concentration to fulfil their requirements and at the same time, avoid copper toxicity. We have previously demonstrated that, as in Escherichia coli, the Salmonella cue system protects the cytosol from copper excess. On the other hand, and even though Salmonella lacks the CusCFBA periplasmic copper efflux system, it can support higher copper concentrations than E. coli under anaerobic conditions. Here we show that the Salmonella cue regulon is also responsible for the control of copper toxicity in anaerobiosis. We establish that resistance in this condition requires a novel CueR-controlled gene named cueP. A DeltacueP mutant is highly susceptible to copper in the absence of oxygen, but shows a faint phenotype in aerobic conditions unless other copper-resistance genes are also deleted, resembling the E. coli CusCFBA behaviour. Species that contain a cueP homologue under CueR regulation have no functional CusR/CusS-dependent Cus-coding operon. Conversely, species that carry a CusR/CusS-regulated cus operon have no cueP homologues. Even more, we show that the CueR-controlled cueP expression increases copper resistance of a Deltacus E. coli. We posit that CueP can functionally replace the Cus complex for periplasmic copper resistance, in particular under anaerobic conditions.


Assuntos
Proteínas de Bactérias/metabolismo , Cobre/metabolismo , Periplasma/metabolismo , Salmonella typhimurium/genética , Sequência de Aminoácidos , Anaerobiose , Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Dados de Sequência Molecular , Periplasma/genética , RNA Bacteriano/genética , Regulon , Salmonella typhimurium/metabolismo
18.
FEMS Microbiol Lett ; 280(2): 226-34, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18248433

RESUMO

Extracellular Mg(2+) controls the activation of the Salmonella PhoP/PhoQ regulatory system. One of the adaptive responses driven by PhoP/PhoQ includes the transcriptional induction of mgtA and mgtCB, which encode two P-type Mg(2+) transporters. Mg(2+) also controls mgtA expression by a riboswitch located in its 5'-untranslated region (5'UTR). In this work, it was shown that the 5'UTR of both mgtA and mgtCB is responsible for a fine-tuned Mg(2+)-dependent regulation of these genes. Evidence was also provided that the Mg(2+) riboswitch targets the mgtA transcript for degradation by RNase E when cells are grown in high Mg(2+) environments.


Assuntos
Adenosina Trifosfatases/metabolismo , Endorribonucleases/metabolismo , Proteínas de Escherichia coli/metabolismo , Homeostase , Magnésio/farmacologia , Proteínas de Membrana Transportadoras/metabolismo , Salmonella/metabolismo , Regiões 5' não Traduzidas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Transporte de Cátions , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Magnésio/metabolismo , Salmonella/genética , Salmonella/crescimento & desenvolvimento , Transcrição Gênica
20.
J Inorg Biochem ; 140: 199-201, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25151035

RESUMO

CueP confers bacterial copper resistance in the periplasm, particularly under anaerobic conditions, through an unknown mechanism. The only available structure and limited solution data suggest that CueP forms noncovalent dimers in solution, whereas sequence conservation suggests important roles for three cysteines and two histidines as copper ligands. Here we report evidence of a dimerization equilibrium mediated by a newly identified interface of functional relevance, which occludes internal copper sites and disulfide bonds but allows for intra- and interchain disulfide bonding, an extensive disulfide relay, and interfacial copper sites. Our results suggest a role for CueP linking redox-state sensing and copper detoxification.


Assuntos
Proteínas de Bactérias/química , Cobre/química , Dissulfetos/química , Sequência de Aminoácidos , Dimerização , Eletroforese em Gel de Poliacrilamida , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA