Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurosci ; 43(5): 749-763, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36604168

RESUMO

A key question in auditory neuroscience is to what extent are brain regions functionally specialized for processing specific sound features, such as location and identity. In auditory cortex, correlations between neural activity and sounds support both the specialization of distinct cortical subfields, and encoding of multiple sound features within individual cortical areas. However, few studies have tested the contribution of auditory cortex to hearing in multiple contexts. Here we determined the role of ferret primary auditory cortex in both spatial and nonspatial hearing by reversibly inactivating the middle ectosylvian gyrus during behavior using cooling (n = 2 females) or optogenetics (n = 1 female). Optogenetic experiments used the mDLx promoter to express Channelrhodopsin-2 in GABAergic interneurons, and we confirmed both viral expression (n = 2 females) and light-driven suppression of spiking activity in auditory cortex, recorded using Neuropixels under anesthesia (n = 465 units from 2 additional untrained female ferrets). Cortical inactivation via cooling or optogenetics impaired vowel discrimination in colocated noise. Ferrets implanted with cooling loops were tested in additional conditions that revealed no deficit when identifying vowels in clean conditions, or when the temporally coincident vowel and noise were spatially separated by 180 degrees. These animals did, however, show impaired sound localization when inactivating the same auditory cortical region implicated in vowel discrimination in noise. Our results demonstrate that, as a brain region showing mixed selectivity for spatial and nonspatial features of sound, primary auditory cortex contributes to multiple forms of hearing.SIGNIFICANCE STATEMENT Neurons in primary auditory cortex are often sensitive to the location and identity of sounds. Here we inactivated auditory cortex during spatial and nonspatial listening tasks using cooling, or optogenetics. Auditory cortical inactivation impaired multiple behaviors, demonstrating a role in both the analysis of sound location and identity and confirming a functional contribution of mixed selectivity observed in neural activity. Parallel optogenetic experiments in two additional untrained ferrets linked behavior to physiology by demonstrating that expression of Channelrhodopsin-2 permitted rapid light-driven suppression of auditory cortical activity recorded under anesthesia.


Assuntos
Córtex Auditivo , Localização de Som , Animais , Feminino , Córtex Auditivo/fisiologia , Furões/fisiologia , Channelrhodopsins/genética , Estimulação Acústica , Localização de Som/fisiologia , Percepção Auditiva/fisiologia , Audição
2.
Behav Res Methods ; 53(4): 1551-1562, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33300103

RESUMO

Online experimental platforms can be used as an alternative to, or complement, lab-based research. However, when conducting auditory experiments via online methods, the researcher has limited control over the participants' listening environment. We offer a new method to probe one aspect of that environment, headphone use. Headphones not only provide better control of sound presentation but can also "shield" the listener from background noise. Here we present a rapid (< 3 min) headphone screening test based on Huggins Pitch (HP), a perceptual phenomenon that can only be detected when stimuli are presented dichotically. We validate this test using a cohort of "Trusted" online participants who completed the test using both headphones and loudspeakers. The same participants were also used to test an existing headphone test (AP test; Woods et al., 2017, Attention Perception Psychophysics). We demonstrate that compared to the AP test, the HP test has a higher selectivity for headphone users, rendering it as a compelling alternative to existing methods. Overall, the new HP test correctly detects 80% of headphone users and has a false-positive rate of 20%. Moreover, we demonstrate that combining the HP test with an additional test-either the AP test or an alternative based on a beat test (BT)-can lower the false-positive rate to ~ 7%. This should be useful in situations where headphone use is particularly critical (e.g., dichotic or spatial manipulations). Code for implementing the new tests is publicly available in JavaScript and through Gorilla (gorilla.sc).


Assuntos
Percepção Auditiva , Ruído , Estimulação Acústica , Humanos , Psicofísica , Som
3.
Trends Neurosci ; 45(1): 64-77, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34799134

RESUMO

Inactivation experiments in auditory cortex (AC) produce widely varying results that complicate interpretations regarding the precise role of AC in auditory perception and ensuing behaviour. The advent of optogenetic methods in neuroscience offers previously unachievable insight into the mechanisms transforming brain activity into behaviour. With a view to aiding the design and interpretation of future studies in and outside AC, here we discuss the methodological challenges faced in manipulating neural activity. While considering AC's role in auditory behaviour through the prism of inactivation experiments, we consider the factors that confound the interpretation of the effects of inactivation on behaviour, including the species, the type of inactivation, the behavioural task employed, and the exact location of the inactivation.


Assuntos
Córtex Auditivo , Estimulação Acústica , Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Humanos , Optogenética
4.
Sci Rep ; 12(1): 14493, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-36008519

RESUMO

The cochlea decomposes sounds into separate frequency channels, from which the auditory brain must reconstruct the auditory scene. To do this the auditory system must make decisions about which frequency information should be grouped together, and which should remain distinct. Two key cues for grouping are temporal coherence, resulting from coherent changes in power across frequency, and temporal predictability, resulting from regular or predictable changes over time. To test how these cues contribute to the construction of a sound scene we present listeners with a range of precursor sounds, which act to prime the auditory system by providing information about each sounds structure, followed by a fixed masker in which participants were required to detect the presence of an embedded tone. By manipulating temporal coherence and/or temporal predictability in the precursor we assess how prior sound exposure influences subsequent auditory grouping. In Experiment 1, we measure the contribution of temporal predictability by presenting temporally regular or jittered precursors, and temporal coherence by using either narrow or broadband sounds, demonstrating that both independently contribute to masking/unmasking. In Experiment 2, we measure the relative impact of temporal coherence and temporal predictability and ask whether the influence of each in the precursor signifies an enhancement or interference of unmasking. We observed that interfering precursors produced the largest changes to thresholds.


Assuntos
Sinais (Psicologia) , Mascaramento Perceptivo , Estimulação Acústica , Percepção Auditiva , Limiar Auditivo , Humanos , Som
5.
PLoS One ; 15(8): e0232733, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32764762

RESUMO

Ferrets (Mustela putorius furo) are a valuable animal model used in biomedical research. Like many animals, ferrets undergo significant variation in body weight seasonally, affected by photoperiod, and these variations complicate the use weight as an indicator of health status. To overcome this requires a better understanding of these seasonal weight changes. We provide a normative weight data set for the female ferret accounting for seasonal changes, and also investigate the effect of fluid regulation on weight change. Female ferrets (n = 39) underwent behavioural testing from May 2017 to August 2019 and were weighed daily, while housed in an animal care facility with controlled light exposure. In the winter (October to March), animals experienced 10 hours of light and 14 hours of dark, while in summer (March to October), this contingency was reversed. Individual animals varied in their body weight from approximately 700 to 1200 g. However, weights fluctuated with light cycle, with animals losing weight in summer, and gaining weight in winter such that they fluctuated between approximately 80% and 120% of their long-term average. Ferrets were weighed as part of their health assessment while experiencing water regulation for behavioural training. Water regulation superimposed additional weight changes on these seasonal fluctuations, with weight loss during the 5-day water regulation period being greater in summer than winter. Analysing the data with a Generalised Linear Model confirmed that the percentage decrease in weight per week was relatively constant throughout the summer months, while the percentage increase in body weight per week in winter decreased through the season. Finally, we noted that the timing of oestrus was reliably triggered by the increase in day length in spring. These data establish a normative benchmark for seasonal weight variation in female ferrets that can be incorporated into the health assessment of an animal's condition.


Assuntos
Peso Corporal , Furões/anatomia & histologia , Criação de Animais Domésticos , Animais , Animais de Laboratório/anatomia & histologia , Animais de Laboratório/fisiologia , Água Corporal/fisiologia , Estro/fisiologia , Feminino , Furões/fisiologia , Modelos Lineares , Modelos Animais , Modelos Biológicos , Fotoperíodo , Valores de Referência , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA