RESUMO
Glutamine is consumed by rapidly proliferating cells and can provide the carbon and nitrogen required for growth through various metabolic pathways. However, delineating the metabolic fate of glutamine is challenging to interrogate in vivo. Hyperpolarized magnetic resonance, by providing high transient nuclear magnetic resonance signals, provides an approach to measure fast biochemical processes in vivo. Aminohydrolysis of glutamine at carbon-5 plays an important role in providing nitrogen and carbon for multiple pathways. Here, we provide a synthetic strategy for isotope-enriched forms of glutamine that prolongs glutamine-C5 relaxation times and thereby reveals in vivo reactions involving carbon-5. We investigate multiple enrichment states, finding [5-13C,4,4-2H2,5-15N]-L-glutamine to be optimal for hyperpolarized measurement of glutamine conversion to glutamate in vivo. Leveraging this compound, we explore pancreatic cancer glutamine metabolism in vivo. Taken together, this work provides a means for studying glutamine metabolic flux in vivo and demonstrates on-target effects of metabolic enzyme inhibitors.
Assuntos
Glutaminase , Glutamina , Biomarcadores/metabolismo , Ciclo do Ácido Cítrico , Glutaminase/metabolismo , Glutamina/metabolismo , Humanos , MetabolômicaRESUMO
PURPOSE: Sentinel lymph node (SLN) biopsy is rarely used for thyroid carcinoma staging. This is due to challenges associated with conventional Tc-99m-labeled tracers, often producing a large hotspot at the injection site, potentially hiding nearby SLNs (shine-through effect). The aim of this study was to demonstrate the feasibility and effectiveness of SLN visualization using the new PET tracer [68Ga]Ga-tilmanocept. METHODS: Patients with thyroid carcinoma underwent ultrasound-guided peritumoral injection of [68Ga]Ga-tilmanocept and ICG-[99mTc]Tc-nanocolloid. [68Ga]Ga-tilmanocept PET/CT scans were conducted at 15 min and 60 min post-injection to visualize the SLNs. SLN biopsy was performed using ICG-[99mTc]TC-nanocolloid for intraoperative identification. The corresponding lymph node level was resected for reference. RESULTS: Seven differentiated thyroid carcinoma (DTC) and 3 medullary thyroid carcinoma (MTC) patients were included, of which 6 were clinically node-negative. The median number of SLNs detected on [68Ga]Ga-tilmanocept PET/CT and resected was 3 (range 1-4) and 3 (range 1-5), respectively. Eight SLNs were found on PET/CT in the central compartment and 19 in the lateral compartment. The SLN procedure detected (micro)metastases in all patients except one. Seventeen of 27 pathologically assessed SLNs were positive, 8 negative, and 2 did not contain lymph node tissue, which led to upstaging in 5 out of 6 clinically node-negative patients. CONCLUSIONS: [68Ga]Ga-tilmanocept PET/CT identified SLNs in all patients, mainly in the lateral neck. The SLNs were successfully surgically detected and resected using ICG-[99mTc]Tc-nanocolloid. This technique has the potential to improve neck staging, enabling more personalized treatment of thyroid cancer according to the lymph node status. TRIAL REGISTRATION: 2021-002470-42 (EudraCT).
Assuntos
Linfonodo Sentinela , Neoplasias da Glândula Tireoide , Humanos , Linfonodo Sentinela/cirurgia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Radioisótopos de Gálio , Metástase Linfática/diagnóstico por imagem , Metástase Linfática/patologia , Linfocintigrafia/métodos , Biópsia de Linfonodo Sentinela/métodos , Linfonodos/patologia , Neoplasias da Glândula Tireoide/patologia , Compostos RadiofarmacêuticosRESUMO
PURPOSE: Meta-[18F]fluorobenzylguanidine ([18F]mFBG) is a positron emission tomography (PET) radiotracer that allows for fast and high-resolution imaging of tumours expressing the norepinephrine transporter. This pilot study investigates the feasibility of [18F]mFBG PET-CT for imaging in neuroblastoma. METHODS: In a prospective, single-centre study, we recruited children with neuroblastoma, referred for meta-[123I]iodobenzylguanidine ([123I]mIBG) scanning, consisting of total body planar scintigraphy in combination with single-photon emission computed tomography-CT (SPECT-CT). Within two weeks of [123I]mIBG scanning, total body PET-CTs were performed at 1 h and 2 h after injection of [18F]mFBG (2 MBq/kg). Detected tumour localisations on scan pairs were compared. Soft tissue disease was quantified by number of lesions and skeletal disease by SIOPEN score. RESULTS: Twenty paired [123I]mIBG and [18F]mFBG scans were performed in 14 patients (median age 4.9 years, n = 13 stage 4 disease and n = 1 stage 4S). [18F]mFBG injection was well tolerated and no related adverse events occurred in any of the patients. Mean scan time for [18F]mFBG PET-CT (9.0 min, SD 1.9) was significantly shorter than for [123I]mIBG scanning (84.5 min, SD 10.5), p < 0.01. Most tumour localisations were detected on the 1 h versus 2 h post-injection [18F]mFBG PET-CT. Compared to [123I]mIBG scanning, [18F]mFBG PET-CT detected a higher, equal, and lower number of soft tissue lesions in 40%, 55%, and 5% of scan pairs, respectively, and a higher, equal, and lower SIOPEN score in 55%, 30%, and 15% of scan pairs, respectively. On average, two more soft tissue lesions and a 6-point higher SIOPEN score were detected per patient on [18F]mFBG PET-CT compared to [123I]mIBG scanning. CONCLUSION: Results of this study demonstrate feasibility of [18F]mFBG PET-CT for neuroblastoma imaging. More neuroblastoma localisations were detected on [18F]mFBG PET-CT compared to [123I]mIBG scanning. [18F]mFBG PET-CT shows promise for future staging and response assessment in neuroblastoma. TRIAL REGISTRATION: Dutch Trial Register NL8152.
Assuntos
Neuroblastoma , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Pré-Escolar , Humanos , 3-Iodobenzilguanidina , Neuroblastoma/diagnóstico por imagem , Neuroblastoma/patologia , Projetos Piloto , Tomografia por Emissão de Pósitrons/métodos , Estudos ProspectivosRESUMO
Implant infections caused by Staphylococcus aureus are difficult to treat due to biofilm formation, which complicates surgical and antibiotic treatment. We introduce an alternative approach using monoclonal antibodies (mAbs) targeting S. aureus and provide evidence of the specificity and biodistribution of S.-aureus-targeting antibodies in a mouse implant infection model. The monoclonal antibody 4497-IgG1 targeting wall teichoic acid in S. aureus was labeled with indium-111 using CHX-A"-DTPA as a chelator. Single Photon Emission Computed Tomography/computed tomographyscans were performed at 24, 72 and 120 h after administration of the 111In-4497 mAb in Balb/cAnNCrl mice with a subcutaneous implant that was pre-colonized with S. aureus biofilm. The biodistribution of this labelled antibody over various organs was visualized and quantified using SPECT/CT imaging, and was compared to the uptake at the target tissue with the implanted infection. Uptake of the 111In-4497 mAbs at the infected implant gradually increased from 8.34 %ID/cm3 at 24 h to 9.22 %ID/cm3 at 120 h. Uptake at the heart/blood pool decreased over time from 11.60 to 7.58 %ID/cm3, whereas the uptake in the other organs decreased from 7.26 to less than 4.66 %ID/cm3 at 120 h. The effective half-life of 111In-4497 mAbs was determined to be 59 h. In conclusion, 111In-4497 mAbs were found to specifically detect S. aureus and its biofilm with excellent and prolonged accumulation at the site of the colonized implant. Therefore, it has the potential to serve as a drug delivery system for the diagnostic and bactericidal treatment of biofilm.
Assuntos
Anticorpos Monoclonais , Staphylococcus aureus , Animais , Camundongos , Staphylococcus aureus/metabolismo , Distribuição Tecidual , Anticorpos Monoclonais/uso terapêutico , Tomografia Computadorizada de Emissão de Fóton Único/métodos , QuelantesRESUMO
BACKGROUND: In colorectal cancer (CRC), the consensus molecular subtype 4 (CMS4) is associated with therapy resistance and poor prognosis. Clinical diagnosis of CMS4 is hampered by locoregional and temporal variables influencing CMS classification. Diagnostic tools that comprehensively detect CMS4 are therefore urgently needed. METHODS: To identify targets for molecular CMS4 imaging, RNA sequencing data of 3232 primary CRC patients were explored. Heterogeneity of marker expression in relation to CMS4 status was assessed by analysing 3-5 tumour regions and 91.103 single-tumour cells (7 and 29 tumours, respectively). Candidate marker expression was validated in CMS4 peritoneal metastases (PM; n = 59). Molecular imaging was performed using the 68Ga-DOTA-FAPI-46 PET tracer. RESULTS: Fibroblast activation protein (FAP) mRNA identified CMS4 with very high sensitivity and specificity (AUROC > 0.91), and was associated with significantly shorter relapse-free survival (P = 0.0038). Heterogeneous expression of FAP among and within tumour lesions correlated with CMS4 heterogeneity (AUROC = 1.00). FAP expression was homogeneously high in PM, a near-homogeneous CMS4 entity. FAPI-PET identified focal and diffuse PM that were missed using conventional imaging. Extra-peritoneal metastases displayed extensive heterogeneity of tracer uptake. CONCLUSION: FAP expression identifies CMS4 CRC. FAPI-PET may have value in the comprehensive detection of CMS4 tumours in CRC. This is especially relevant in patients with PM, for whom effective imaging tools are currently lacking.
Assuntos
Neoplasias Colorretais , Neoplasias Peritoneais , Neoplasias Colorretais/diagnóstico por imagem , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Fibroblastos/patologia , Radioisótopos de Gálio/uso terapêutico , Humanos , Recidiva Local de Neoplasia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Tomografia por Emissão de PósitronsRESUMO
PURPOSE: Almost all radiolabellings of antibodies with 89Zr currently employ the hexadentate chelator desferrioxamine (DFO). However, DFO can lead to unwanted uptake of 89Zr in bones due to instability of the resulting metal complex. DFO*-NCS and the squaramide ester of DFO, DFOSq, are novel analogues that gave more stable 89Zr complexes than DFO in pilot experiments. Here, we directly compare these linker-chelator systems to identify optimal immuno-PET reagents. METHODS: Cetuximab, trastuzumab and B12 (non-binding control antibody) were labelled with 89Zr via DFO*-NCS, DFOSq, DFO-NCS or DFO*Sq. Stability in vitro was compared at 37 °C in serum (7 days), in formulation solution (24 h ± chelator challenges) and in vivo with N87 and A431 tumour-bearing mice. Finally, to demonstrate the practical benefit of more stable complexation for the accurate detection of bone metastases, [89Zr]Zr-DFO*-NCS and [89Zr]Zr-DFO-NCS-labelled trastuzumab and B12 were evaluated in a bone metastasis mouse model where BT-474 breast cancer cells were injected intratibially. RESULTS: [89Zr]Zr-DFO*-NCS-trastuzumab and [89Zr]Zr-DFO*Sq-trastuzumab showed excellent stability in vitro, superior to their [89Zr]Zr-DFO counterparts under all conditions. While tumour uptake was similar for all conjugates, bone uptake was lower for DFO* conjugates. Lower bone uptake for DFO* conjugates was confirmed using a second xenograft model: A431 combined with cetuximab. Finally, in the intratibial BT-474 bone metastasis model, the DFO* conjugates provided superior detection of tumour-specific signal over the DFO conjugates. CONCLUSION: DFO*-mAb conjugates provide lower bone uptake than their DFO analogues; thus, DFO* is a superior candidate for preclinical and clinical 89Zr-immuno-PET.
Assuntos
Quelantes , Radioisótopos , Animais , Linhagem Celular Tumoral , Desferroxamina , Camundongos , Tomografia por Emissão de Pósitrons , Distribuição Tecidual , ZircônioRESUMO
89Zr-radiolabelled proteins functionalised with desferrioxamine B are a cornerstone of diagnostic positron emission tomography. In the clinical setting, 89Zr-labelled proteins are produced manually. Here, we explore the potential of using a microfluidic photochemical flow reactor to prepare 89Zr-radiolabelled proteins. The light-induced functionalisation and 89Zr-radiolabelling of human serum albumin ([89Zr]ZrDFO-PEG3-Et-azepin-HSA) was achieved by flow photochemistry with a decay-corrected radiochemical yield (RCY) of 31.2 ± 1.3% (n = 3) and radiochemical purity >90%. In comparison, a manual batch photoreactor synthesis produced the same radiotracer in a decay-corrected RCY of 59.6 ± 3.6% (n = 3) with an equivalent RCP > 90%. The results indicate that photoradiolabelling in flow is a feasible platform for the automated production of protein-based 89Zr-radiotracers, but further refinement of the apparatus and optimisation of the method are required before the flow process is competitive with manual reactions.
Assuntos
Dispositivos Lab-On-A-Chip , Radioquímica/instrumentação , Radioisótopos/química , Albumina Sérica Humana/química , Zircônio/química , Humanos , Marcação por Isótopo , FotoquímicaAssuntos
Neoplasias das Glândulas Suprarrenais , Compostos Organometálicos , Feocromocitoma , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Feocromocitoma/diagnóstico por imagem , Recidiva Local de Neoplasia , Tomografia por Emissão de Pósitrons/métodos , Neoplasias das Glândulas Suprarrenais/diagnóstico por imagem , Imageamento por Ressonância MagnéticaRESUMO
Two potent SP1-7 peptidomimetics have been successfully radiolabeled via [11C]CO2-fixation with excellent yields, purity, and molar activity. l-[11C]SP1-7-peptidomimetic exhibited promising ex vivo biodistribution profile. Metabolite analysis showed that l-[11C]SP1-7-peptidomimetic is stable in brain and spinal cord, whereas rapid metabolic degradation occurs in rat plasma. Metabolic stability can be significantly improved by substituting l-Phe for d-Phe, preserving 70% more of intact tracer and resulting in better brain and spinal cord tracer retention. Positron emission tomography (PET) scanning confirmed moderate brain (1.5 SUV; peak at 3 min) and spinal cord (1.0 SUV; peak at 10 min) uptake for l- and d-[11C]SP1-7-peptidomimetic. A slight decrease in SUV value was observed after pretreatment with natural peptide SP1-7 in spinal cord for l-[11C]SP1-7-peptidomimetic. On the contrary, blocking using cold analogues of l- and d-[11C]tracers did not reduce the tracers' brain and spinal cord exposure. In summary, PET scanning of l- and d-[11C]SP1-7-peptidomimetics confirms rapid blood-brain barrier and blood-spinal-cord barrier penetration. Therefore, further validation of these two tracers targeting SP1-7 is needed in order to define a new PET imaging target and select its most appropriate radiopharmaceutical.
Assuntos
Imagem Molecular/métodos , Peptidomiméticos/farmacocinética , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/farmacocinética , Substância P/metabolismo , Animais , Barreira Hematoencefálica/diagnóstico por imagem , Barreira Hematoencefálica/metabolismo , Radioisótopos de Carbono/química , Avaliação Pré-Clínica de Medicamentos , Injeções Intravenosas , Masculino , Modelos Animais , Peptidomiméticos/administração & dosagem , Peptidomiméticos/química , Permeabilidade , Compostos Radiofarmacêuticos/administração & dosagem , Compostos Radiofarmacêuticos/química , Ratos , Ratos Wistar , Medula Espinal/diagnóstico por imagem , Medula Espinal/metabolismo , Distribuição TecidualRESUMO
Positron emission tomography (PET) is an important driver for present day healthcare. Fluorine-18 is the most widely used radioisotope for PET imaging and a thorough overview of the available radiochemistry methodology is a prerequisite for selection of a synthetic approach for new fluorine-18 labelled PET tracers. These PET tracers can be synthesised either by late-stage radiofluorination, introducing fluorine-18 in the last step of the synthesis, or by a building block approach (also called modular build-up approach), introducing fluorine-18 in a fast and efficient manner in a building block, which is reacted further in one or multiple reaction steps to form the PET tracer. This review presents a comprehensive overview of the synthesis and application of fluorine-18 labelled building blocks since 2010.
Assuntos
Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/síntese química , Radioisótopos de Flúor , Estrutura Molecular , Compostos Radiofarmacêuticos/químicaRESUMO
PURPOSE: All clinical 89Zr-immuno-PET studies are currently performed with the chelator desferrioxamine (DFO). This chelator provides hexadentate coordination to zirconium, leaving two coordination sites available for coordination with, e.g., water molecules, which are relatively labile ligands. The unsaturated coordination of DFO to zirconium has been suggested to result in impaired stability of the complex in vivo and consequently in unwanted bone uptake of 89Zr. Aiming at clinical improvements, we report here on a bifunctional isothiocyanate variant of the octadentate chelator DFO* and the in vitro and in vivo comparison of its 89Zr-DFO*-mAb complex with 89Zr-DFO-mAb. METHODS: The bifunctional chelator DFO*-pPhe-NCS was prepared from previously reported DFO* and p-phenylenediisothiocyanate. Subsequently, trastuzumab was conjugated with either DFO*-pPhe-NCS or commercial DFO-pPhe-NCS and radiolabeled with Zr-89 according to published procedures. In vitro stability experiments were carried out in saline, a histidine/sucrose buffer, and blood serum. The in vivo performance of the chelators was compared in N87 tumor-bearing mice by biodistribution studies and PET imaging. RESULTS: In 0.9 % NaCl 89Zr-DFO*-trastuzumab was more stable than 89Zr-DFO-trastuzumab; after 72 h incubation at 2-8 °C 95 % and 58 % intact tracer were left, respectively, while in a histidine-sucrose buffer no difference was observed, both products were ≥ 92 % intact. In vivo uptake at 144 h post injection (p.i.) in tumors, blood, and most normal organs was similar for both conjugates, except for skin, liver, spleen, ileum, and bone. Tumor uptake was 32.59 ± 11.95 and 29.06 ± 8.66 % ID/g for 89Zr-DFO*-trastuzumab and 89Zr-DFO-trastuzumab, respectively. The bone uptake was significantly lower for 89Zr-DFO*-trastuzumab compared to 89Zr-DFO-trastuzumab. At 144 h p.i. for 89Zr-DFO*-trastuzumab and 89Zr-DFO-trastuzumab, the uptake in sternum was 0.92 ± 0.16 and 3.33 ± 0.32 % ID/g, in femur 0.78 ± 0.11 and 3.85, ± 0.80 and in knee 1.38 ± 0.23 and 8.20 ± 2.94 % ID/g, respectively. The uptake in bone decreased from 24 h to 144 h p.i. about two fold for the DFO* conjugate, while it increased about two fold for the DFO conjugate. CONCLUSIONS: Zr-DFO*-trastuzumab showed superior in vitro stability and in vivo performance when compared to 89Zr-DFO-trastuzumab. This makes the new octadentate DFO* chelator a candidate successor of DFO for future clinical 89Zr-immuno-PET.
Assuntos
Desferroxamina/química , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/imunologia , Tomografia por Emissão de Pósitrons/métodos , Trastuzumab/imunologia , Zircônio/farmacocinética , Animais , Linhagem Celular Tumoral , Quelantes/química , Estabilidade de Medicamentos , Feminino , Marcação por Isótopo/métodos , Camundongos , Camundongos Nus , Especificidade de Órgãos , Radioisótopos/química , Radioisótopos/farmacocinética , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/farmacocinética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Distribuição Tecidual , Zircônio/químicaRESUMO
A rapid method for the synthesis of carbon-11 radiolabeled phenylalanine was developed using a chiral phase-transfer catalyst and a sub-nanomolar quantity of [11C]benzyl iodide as a radio-precursor. Based on a reported synthesis of [11C]benzyl iodide, a Schiff base precursor was evaluated for stereoselective [11C]benzylation. Extensive and interactive screening of the precursor, catalyst, base, stirring and temperature was required to achieve high stereoinduction. The result is an efficient 5-step radiolabeling method to reliably synthesize l- or d-[11C]phenylalanine with an excellent enantiomeric excess of >90% and almost quantitative radiochemical conversion of >95% (n > 5). Additionally, a phase-transfer catalyzed alkylation was utilized on the preparative scale using automated platform. The application resulted in high specific activity ranging from 85-135 GBq µmol-1 of the enantiomerically pure [11C]phenylalanine, showing that the process is robust and amenable to broad use in PET.
Assuntos
Fenilalanina/síntese química , Radioisótopos de Carbono , Catálise , Estrutura Molecular , Transição de Fase , Fenilalanina/química , Tomografia por Emissão de Pósitrons , EstereoisomerismoRESUMO
The multitude of biologically active compounds requires the availability of a broad spectrum of radiolabeled synthons for the development of positron emission tomography (PET) tracers. The aim of this study was to synthesize 1-iodo-2-[11 C]methylpropane and 2-methyl-1-[11 C]propanol and investigate the use of these reagents in further radiosynthesis reactions. 2-Methyl-1-[11 C]propanol was obtained with an average radiochemical yield of 46 ± 6% d.c. and used with fluorobenzene as starting material. High conversion rates of 85 ± 4% d.c. could be observed with HPLC, but large precursor amounts (32 mg, 333 µmol) were needed. 1-Iodo-2-[11 C]methylpropane was synthesized with a radiochemical yield of 25 ± 7% d.c. and with a radiochemical purity of 78 ± 7% d.c. The labelling agent 1-iodo-2-[11 C]methylpropane was coupled to thiophenol, phenol and phenylmagnesium bromide. Average radiochemical conversions of 83% d.c. for thiophenol, 40% d.c. for phenol, and 60% d.c. for phenylmagnesium bromide were obtained. In addition, [11 C]2-methyl-1-propyl phenyl sulphide was isolated with a radiochemical yield of 5 ± 1% d.c. and a molar activity of 346 ± 113 GBq/µmol at the end of synthesis. Altogether, the syntheses of 1-iodo-2-[11 C]methylpropane and 2-methyl-1-[11 C]propanol were achieved and applied as proof of their applicability.
Assuntos
1-Propanol/química , 1-Propanol/síntese química , Radioisótopos do Iodo/química , Propano/química , Propano/síntese química , Alquilação , Marcação por Isótopo , Tomografia por Emissão de Pósitrons , RadioquímicaRESUMO
Positron emission tomography has increased the demand for new carbon-11 radiolabeled tracers and building blocks. A promising radiolabeling synthon is [(11) C]benzyl iodide ([(11) C]BnI), because the benzyl group is a widely present functionality in biologically active compounds. Unfortunately, synthesis of [(11) C]BnI has received little attention, resulting in limited application. Therefore, we investigated the synthesis in order to significantly improve, automate, and apply it for labeling of the dopamine D2 antagonist [(11) C]clebopride as a proof of concept. [(11) C]BnI was synthesized from [(11) C]CO2 via a Grignard reaction and purified prior the reaction with desbenzyl clebopride. According to a one-pot procedure, [(11) C]BnI was synthesized in 11 min from [(11) C]CO2 with high yield, purity, and specific activity, 52 ± 3% (end of the cyclotron bombardment), 95 ± 3%, and 123 ± 17 GBq/µmol (end of the synthesis), respectively. Changes in the [(11) C]BnI synthesis are reduced amounts of reagents, a lower temperature in the Grignard reaction, and the introduction of a solid-phase intermediate purification. [(11) C]Clebopride was synthesized within 28 min from [(11) C]CO2 in an isolated decay-corrected yield of 11 ± 3% (end of the cyclotron bombardment) with a purity of >98% and specific activity (SA) of 54 ± 4 GBq/µmol (n = 3) at the end of the synthesis. Conversion of [(11) C]BnI to product was 82 ± 11%. The reliable synthesis of [(11) C]BnI allows the broad application of this synthon in positron emission tomography radiopharmaceutical development.
Assuntos
Compostos de Benzil/síntese química , Encéfalo/diagnóstico por imagem , Radioisótopos de Carbono , Hidrocarbonetos Iodados/síntese química , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/síntese química , Humanos , Marcação por Isótopo/métodos , Estrutura MolecularRESUMO
Ovarian cancer mortality rates have not decreased significantly in the past years. As most women are still diagnosed in an advanced stage, there is a need for new treatment strategies for recurrent disease. A potentially new developing targeted approach, theranostics, combines diagnostics and treatment using radiopharmaceuticals. Through target receptors, imaging and treatment of malignant tissue can be achieved. For ovarian malignancy, the follicle-stimulating hormone (FSH) receptor may serve as a possible target since expression appears to be limited to ovarian cells. In this systematic review, we aim to gather all available literature on the expression of the FSH receptor in ovarian tumors. Pubmed, Embase and the Cochrane databases were searched until December 2023 for eligible studies. The search yielded 41 studies, mostly regarding serous carcinomas, sex cord-stromal tumors (SCSTs) and cell lines of serous and SCSTs. Various techniques were used to analyze the expression of the FSH receptor. For serous carcinomas, conflicting results on the expression of the FSH receptor were found. Studies on SCSTs, mainly studying the subtype of granulosa cell tumors, all showed positive expression of the FSH receptor. In the cell lines studies, the KGN cell line derived from a granulosa cell tumor shows positive expression in all studies. Available studies show that SCSTs express the FSH receptor. A theranostic approach targeting the FSH receptor may, therefore, provide a useful new approach for this malignancy with limited therapeutic options in recurrent disease.
RESUMO
To date, the imaging and diagnosis of hepatocellular carcinoma (HCC) rely on CT/MRI, which have well-known limitations. Glypican-3 (GPC3) is a cell surface receptor highly expressed by HCC but not by normal or cirrhotic liver tissue. Here we report initial clinical results of GPC3-targeted PET imaging with [68Ga]Ga-DOTA-RYZ-GPC3 (RAYZ-8009), a peptide-based GPC3 ligand in patients with known or suspected HCC. Methods: [68Ga]Ga-RAYZ-8009 was obtained after labeling the peptide precursor with 68Ga from a 68Ge/68Ga generator and heating at 90°C for 10 min followed by sterile filtration. After administration of [68Ga]Ga-RAYZ-8009, a dynamic or static PET/CT scan was acquired between 45 min and 4 h after administration. Radiotracer uptake was measured by SUVs for the following tissues: suspected or actual HCC or hepatoblastoma lesions, non-tumor-bearing liver, renal cortex, blood pool in the left ventricle, and gastric fundus. Additionally, tumor-to-healthy-liver ratios (TLRs) were calculated. Results: Twenty-four patients (5 patients in the dynamic protocol; 19 patients in the static protocol) were scanned. No adverse events occurred. Two patients had no lesion detected and did not have HCC during follow-up. In total, 50 lesions were detected and analyzed. The mean SUVmax of these lesions was 19.6 (range, 2.7-95.3), and the mean SUVmean was 10.1 (range, 1.0-49.2) at approximately 60 min after administration. Uptake in non-tumor-bearing liver and blood pool rapidly decreased over time and became negligible 45 min after administration (mean SUVmean, <1.6), with a continuous decline to 4 h after administration (mean SUVmean, 1.0). The opposite was observed for HCC lesions, for which SUVs and TLRs continuously increased for up to 4 h after administration. In individual lesion analysis, TLR was the highest between 60 and 120 min after administration. Uptake in the gastric fundus gradually increased for up to 45 min (to an SUVmax of 31.3) and decreased gradually afterward. Conclusion: [68Ga]Ga-RAYZ-8009 is safe and allows for high-contrast imaging of GPC3-positive HCC, with rapid clearance from most normal organs. Thereby, [68Ga]Ga-RAYZ-8009 is promising for HCC diagnosis and staging. Further research is warranted.
Assuntos
Carcinoma Hepatocelular , Glipicanas , Neoplasias Hepáticas , Compostos Radiofarmacêuticos , Humanos , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/metabolismo , Masculino , Glipicanas/metabolismo , Feminino , Pessoa de Meia-Idade , Idoso , Compostos Radiofarmacêuticos/química , Radioisótopos de Gálio , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Imagem Molecular/métodos , Adulto , Idoso de 80 Anos ou maisRESUMO
BACKGROUND: Mutations in the epidermal growth factor receptor (EGFR) kinase domain are common in non-small cell lung cancer. Conventional tyrosine kinase inhibitors target the mutation site in the ATP binding pocket, thereby inhibiting the receptor's function. However, subsequent treatment resistance mutations in the ATP binding site are common. The EGFR allosteric inhibitor, EAI045, is proposed to have an alternative mechanism of action, disrupting receptor signaling independent of the ATP-binding site. The antibody cetuximab is hypothesized to increase the number of accessible allosteric pockets for EAI045, thus increasing the potency of the inhibitor. This work aimed to gain further knowledge on pharmacokinetics, the EGFR mutation-targeting potential, and the influence of cetuximab on the uptake by radiolabeling EAI045 with carbon-11 and tritium. RESULTS: 2-(5-fluoro-2-hydroxyphenyl)-2-((2-iodobenzyl)amino)-N-(thiazol-2-yl)acetamide and 2-(5-fluoro-2-hydroxyphenyl)-N-(5-iodothiazol-2-yl)-2-(1-oxoisoindolin-2-yl)acetamide were synthesized as precursors for the carbon-11 and tritium labeling of EAI045, respectively. [11C]EAI045 was synthesized using [11C]CO in a palladium-catalyzed ring closure in a 10 ± 1% radiochemical yield (decay corrected to end of [11C]CO2 production), > 97% radiochemical purity and 26 ± 1 GBq/µmol molar activity (determined at end of synthesis) in 51 min. [3H]EAI045 was synthesized by a tritium-halogen exchange in a 0.2% radiochemical yield, 98% radiochemical purity, and 763 kBq/nmol molar activity. The ability of [11C]EAI045 to differentiate between L858R/T790M mutated EGFR expressing H1975 xenografts and wild-type EGFR expressing A549 xenografts was evaluated in female nu/nu mice. The uptake was statistically significantly higher in H1975 xenografts compared to A549 xenografts (0.45 ± 0.07%ID/g vs. 0.31 ± 0.10%ID/g, P = 0.0166). The synergy in inhibition between EAI045 and cetuximab was evaluated in vivo and in vitro. While there was some indication that cetuximab influenced the uptake of [3H]EAI045 in vitro, this could not be confirmed in vivo when tumor-bearing mice were administered cetuximab (0.5 mg), 24 h prior to injection of [11C]EAI045. CONCLUSIONS: EAI045 was successfully labeled with tritium and carbon-11, and the in vivo results indicated [11C]EAI045 may be able to distinguish between mutated and non-mutated EGFR in non-small cell lung cancer mouse models. Cetuximab was hypothesized to increase EAI045 uptake; however, no significant effect was observed on the uptake of [11C]EAI045 in vivo or [3H]EAI045 in vitro in H1975 xenografts and cells.
RESUMO
With the emergence of multidrug resistant (MDR) bacteria, it is imperative to develop new intervention strategies. Current antibiotics typically target pathogen rather than host-specific biochemical pathways. Here we have developed kinase inhibitors that prevent intracellular growth of unrelated pathogens such as Salmonella typhimurium and Mycobacterium tuberculosis. An RNA interference screen of the human kinome using automated microscopy revealed several host kinases capable of inhibiting intracellular growth of S. typhimurium. The kinases identified clustered in one network around AKT1 (also known as PKB). Inhibitors of AKT1 prevent intracellular growth of various bacteria including MDR-M. tuberculosis. AKT1 is activated by the S. typhimurium effector SopB, which promotes intracellular survival by controlling actin dynamics through PAK4, and phagosome-lysosome fusion through the AS160 (also known as TBC1D4)-RAB14 pathway. AKT1 inhibitors counteract the bacterial manipulation of host signalling processes, thus controlling intracellular growth of bacteria. By using a reciprocal chemical genetics approach, we identified kinase inhibitors with antibiotic properties and their host targets, and we determined host signalling networks that are activated by intracellular bacteria for survival.
Assuntos
Espaço Intracelular/microbiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Salmonella typhimurium/crescimento & desenvolvimento , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Linhagem Celular Tumoral , Humanos , Espaço Intracelular/efeitos dos fármacos , Isoquinolinas/química , Isoquinolinas/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Redes e Vias Metabólicas , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Interferência de RNA , Salmonella typhimurium/efeitos dos fármacos , Sulfonamidas/química , Sulfonamidas/farmacologiaRESUMO
Transforming growth factor ß (TGFß) activity is perturbed in remodelled pulmonary vasculature of patients with pulmonary arterial hypertension (PAH), cancer, vascular diseases and developmental disorders. Inhibition of TGFß, which signals via activin receptor-like kinase 5 (ALK5), prevents progression and development of experimental PAH. The purpose of this study was to assess two ALK5 targeting positron emission tomography (PET) tracers ([11C]LR111 and [18F]EW-7197) for imaging ALK5 in monocrotaline (MCT)- and Sugen/hypoxia (SuHx)-induced PAH. Both tracers were subjected to extensive in vitro and in vivo studies. [11C]LR111 showed the highest metabolic stability, as 46 ± 2% of intact tracer was still present in rat blood plasma after 60 min. In autoradiography experiments, [11C]LR111 showed high ALK5 binding in vitro compared with controls, 3.2 and 1.5 times higher in SuHx and MCT, respectively. In addition, its binding could be blocked by SB431542, an adenosine triphosphate competitive ALK5 kinase inhibitor. However, [18F]EW-7197 showed the best in vivo results. 15 min after injection, uptake was 2.5 and 1.4 times higher in the SuHx and MCT lungs, compared with controls. Therefore, [18F]EW-7197 is a promising PET tracer for ALK5 imaging in PAH.