Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(5)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35269652

RESUMO

Glioma is the most common primary intracranial tumor and has the greatest prevalence of all brain tumors. Treatment resistance and tumor recurrence in GBM are mostly explained by considerable alterations within the tumor microenvironment, as well as extraordinary cellular and molecular heterogeneity. Soluble factors, extracellular matrix components, tissue-resident cell types, resident or newly recruited immune cells together make up the GBM microenvironment. Regardless of many immune cells, a profound state of tumor immunosuppression is supported and developed, posing a considerable hurdle to cancer cells' immune-mediated destruction. Several studies have suggested that various GBM subtypes present different modifications in their microenvironment, although the importance of the microenvironment in treatment response has yet to be determined. Understanding the microenvironment and how it changes after therapies is critical because it can influence the remaining invasive GSCs and lead to recurrence. This review article sheds light on the various components of the GBM microenvironment and their roles in tumoral development, as well as immune-related biological processes that support the interconnection/interrelationship between different cell types. Also, we summarize the current understanding of the modulation of soluble factors and highlight the dysregulated inflammatory chemokine/specific receptors cascades/networks and their significance in tumorigenesis, cancer-related inflammation, and metastasis.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/metabolismo , Quimiocinas/metabolismo , Glioblastoma/metabolismo , Humanos , Macrófagos/metabolismo , Microglia/metabolismo , Receptores de Quimiocinas/metabolismo , Microambiente Tumoral
2.
Int J Mol Sci ; 23(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35054787

RESUMO

Glioblastoma (GBM) is one of the most aggressive tumors of the central nervous system, characterized by a wide range of inter- and intratumor heterogeneity. Accumulation of fatty acids (FA) metabolites was associated with a low survival rate in high-grade glioma patients. The diversity of brain lipids, especially polyunsaturated fatty acids (PUFAs), is greater than in all other organs and several classes of proteins, such as FA transport proteins (FATPs), and FA translocases are considered principal candidates for PUFAs transport through BBB and delivery of PUFAs to brain cells. Among these, the CD36 FA translocase promotes long-chain FA uptake as well as oxidated lipoproteins. Moreover, CD36 binds and recognizes thrombospondin-1 (TSP-1), an extracellular matrix protein that was shown to play a multifaceted role in cancer as part of the tumor microenvironment. Effects on tumor cells are mediated by TSP-1 through the interaction with CD36 as well as CD47, a member of the immunoglobulin superfamily. TSP-1/CD47 interactions have an important role in the modulation of glioma cell invasion and angiogenesis in GBM. Separately, FA, the two membrane receptors CD36, CD47, and their joint ligand TSP-1 all play a part in GBM pathogenesis. The last research has put in light their interconnection/interrelationship in order to exert a cumulative effect in the modulation of the GBM molecular network.


Assuntos
Antígenos CD36/metabolismo , Antígeno CD47/metabolismo , Ácidos Graxos/metabolismo , Glioblastoma/metabolismo , Trombospondina 1/metabolismo , Animais , Progressão da Doença , Glioblastoma/patologia , Humanos , Trombospondina 1/química
3.
Int J Mol Sci ; 21(16)2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32781778

RESUMO

Starting from the recent identification of CD36 and CD97 as a novel marker combination of fibroblast quiescence in lung during fibrosis, we aimed to survey the literature in search for facts about the separate (or concomitant) expression of clusters of differentiation CD36 and CD97 in either tumor- or pancreatic-cancer-associated cells. Here, we provide an account of the current knowledge on the diversity of the cellular functions of CD36 and CD97 and explore their potential (common) contributions to key cellular events in oncogenesis or metastasis development. Emphasis is placed on quiescence as an underexplored mechanism and/or potential target in therapy. Furthermore, we discuss intricate signaling mechanisms and networks involving CD36 and CD97 that may regulate different subpopulations of tumor-associated cells, such as cancer-associated fibroblasts, adipocyte-associated fibroblasts, tumor-associated macrophages, or neutrophils, during aggressive pancreatic cancer. The coexistence of quiescence and activated states in cancer-associated cell subtypes during pancreatic cancer should be better documented, in different histological forms. Remodeling of the local microenvironment may also change the balance between growth and dormant state. Taking advantage of the reported data in different other tissue types, we explore the possibility to induce quiescence (similar to that observed in normal cells), as a therapeutic option to delay the currently observed clinical outcome.


Assuntos
Antígenos CD36/metabolismo , Neoplasias Pancreáticas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Humanos , Metástase Neoplásica , Neoplasias Pancreáticas/patologia
4.
Mediators Inflamm ; 2018: 4285268, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30245588

RESUMO

Keratoconus is a progressive corneal ectasia that may lead to severe visual impairment due to the irregular astigmatism caused by corneal thinning. In addition to its association with atopy, eye rubbing, or genetic component, late reports suggest the involvement of inflammation in the pathogenesis of the disease. Our aim was to determine the concentration of IL-4, IL-6, IL-10, RANTES, IFN gamma, and TNF alpha in the tear film of patients with keratoconus and their first degree family members. We analyzed forty-eight participants in an observational cross-sectional study. The diagnosis of keratoconus had to be confirmed in addition to a minimum of 47 D corneal refractive power by corneal topography readings provided by a Placido-based topography system and analysis of the pattern: irregular astigmatism with an asymmetric "bow-tie." As for the other groups, the most important diagnosis criteria were a normal topographic pattern with a regular astigmatism. 17 keratoconus patients, 16 relatives, and 15 controls were recruited after clinical assessment as part of the research. The cytokine's mean values were similar in the keratoconus group and the relatives' samples but significantly higher compared to the controls. Important differences were found in IL-4 levels between keratoconus patients and relatives and between relatives and controls (mean difference of 302.42, p < 0.0016 and 219.16, p < 0.033, Tukey's HSD procedure). In the keratoconus group, using the CORR procedure, we found statistically strong correlations of IL-6 lacrimal concentrations with the disease stage (r = 0.56, p < 0.01), keratometry (r = 0.55, p < 0.02), pachymetry (r = -0.64, p < 0.048), and corneal hysteresis (r = -0.53, p < 0.02). Cytokine overexpression may be relevant for the inflammatory etiology of keratoconus. In conclusion, in the case of some first degree family members, the elevated tear biomarkers may represent a supplementary risk factor.


Assuntos
Ceratocone/metabolismo , Adolescente , Adulto , Quimiocina CCL5/metabolismo , Estudos Transversais , Feminino , Humanos , Interferon gama/metabolismo , Interleucina-10/metabolismo , Interleucina-4/metabolismo , Interleucina-6/metabolismo , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Fator de Necrose Tumoral alfa/metabolismo , Adulto Jovem
5.
Future Oncol ; 11(3): 511-24, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25241806

RESUMO

An important goal of oncology is the development of cancer risk-identifier biomarkers that aid early detection and target therapy. High-throughput profiling represents a major concern for cancer research, including brain tumors. A promising approach for efficacious monitoring of disease progression and therapy could be circulating biomarker panels using molecular proteomic patterns. Tailoring treatment by targeting specific protein-protein interactions and signaling networks, microRNA and cancer stem cell signaling in accordance with tumor phenotype or patient clustering based on biomarker panels represents the future of personalized medicine for brain tumors. Gathering current data regarding biomarker candidates, we address the major challenges surrounding the biomarker field of this devastating tumor type, exploring potential perspectives for the development of more effective predictive biomarker panels.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/tratamento farmacológico , Terapia de Alvo Molecular , Biomarcadores/sangue , Biomarcadores/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/sangue , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Humanos , MicroRNAs/sangue , MicroRNAs/genética , Células Neoplásicas Circulantes/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Proteoma , Proteômica , Transdução de Sinais/efeitos dos fármacos
6.
Proteome Sci ; 12(1): 47, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25298751

RESUMO

BACKGROUND: The rapid progress of proteomics over the past years has allowed the discovery of a large number of potential biomarker candidates to improve early tumor diagnosis and therapeutic response, thus being further integrated into clinical environment. High grade gliomas represent one of the most aggressive and treatment-resistant types of human brain cancer, with approximately 9-12 months median survival rate for patients with grade IV glioma (glioblastoma). Using state-of-the-art proteomics technologies, we have investigated the proteome profile for glioblastoma patients in order to identify a novel protein biomarker panel that could discriminate glioblastoma patients from controls and increase diagnostic accuracy. RESULTS: In this study, SELDI-ToF MS technology was used to screen potential protein patterns in glioblastoma patients serum; furthermore, LC-MS/MS technology was applied to identify the candidate biomarkers peaks. Through these proteomic approaches, three proteins S100A8, S100A9 and CXCL4 were selected as putative biomarkers and confirmed by ELISA. Next step was to validate the above mentioned molecules as biomarkers through identification of protein expression by Western blot in tumoral versus peritumoral tissue. CONCLUSIONS: Proteomic technologies have been used to investigate the protein profile of glioblastoma patients and established several potential diagnostic biomarkers. While it is unlikely for a single biomarker to be highly effective for glioblastoma diagnostic, our data proposed an alternative and efficient approach by using a novel combination of multiple biomarkers.

7.
Mediators Inflamm ; 2013: 979748, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23864770

RESUMO

Inflammation represents the immune system response to external or internal aggressors such as injury or infection in certain tissues. The body's response to cancer has many parallels with inflammation and repair; the inflammatory cells and cytokines present in tumours are more likely to contribute to tumour growth, progression, and immunosuppression, rather than in building an effective antitumour defence. Using new proteomic technology, we have investigated serum profile of pro- (IL-1ß , IL-6, IL-8, IL-12, GM-CSF, and TNF-α ) and anti-inflammatory cytokines (IL-4, IL-10), along with angiogenic factors (VEGF, bFGF) in order to assess tumoural aggressiveness. Our results indicate significant dysregulation in serum levels of cytokines and angiogenic factors, with over threefold upregulation of IL-6, IL-1ß , TNF-α , and IL-10 and up to twofold upregulation of VEGF, FGF-2, IL-8, IL-2, and GM-CSF. These molecules are involved in tumour progression and aggressiveness, and are also involved in a generation of disease associated pain.


Assuntos
Neoplasias Encefálicas/metabolismo , Citocinas/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioblastoma/metabolismo , Adulto , Idoso , Biomarcadores Tumorais/metabolismo , Progressão da Doença , Ensaio de Imunoadsorção Enzimática , Feminino , Perfilação da Expressão Gênica , Humanos , Inflamação/metabolismo , Masculino , Pessoa de Meia-Idade , Prognóstico , Proteômica
8.
J Pers Med ; 13(11)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38003872

RESUMO

BACKGROUND: Despite all the available treatments, psoriasis remains incurable; therefore, finding personalized therapies is a continuous challenge. Psoriasis is linked to a gut microbiota imbalance, highlighting the importance of the gut-skin axis and its inflammatory mediators. Restoring this imbalance can open new perspectives in psoriasis therapy. We investigated the effect of purified IgY raised against pathological human bacteria antibiotic-resistant in induced murine psoriatic dermatitis (PSO). METHODS: To evaluate the immune portrayal in an imiquimod experimental model, before and after IgY treatment, xMAP array and flow cytometry were used. RESULTS: There were significant changes in IL-1α,ß, IL-5, IL-6, IL-9, IL-10, IL-12 (p70), IL-13, IL-15, IL-17a, IFN-γ, TNF-α, IP-10/CXCL10, MCP-1/CCL2, MIP-1α/CCL3, MIP-1ß/CCL4, MIG/CXCL9, and KC/CXCL1 serum levels. T (CD3ε+), B (CD19+) and NK (NK1.1+) cells were also quantified. In our model, TNF-α, IL-6, and IL-1ß cytokines and CXCL1 chemokine have extremely high circulatory levels in the PSO group. Upon experimental therapy, the cytokine serum values were not different between IgY-treated groups and spontaneously remitted PSO. CONCLUSIONS: Using the murine model of psoriatic dermatitis, we show that the orally purified IgY treatment can lead to an improvement in skin lesion healing along with the normalization of cellular and humoral immune parameters.

9.
Pharmaceutics ; 15(12)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38140037

RESUMO

Complicated wounds often require specialized medical treatments, and hydrogels have emerged as a popular choice for wound dressings in such cases due to their unique properties and the ability to incorporate and release therapeutic agents. Our focus was to develop and characterize a new optimized formula for biohybrid hydrogel membranes, which combine natural and synthetic polymers, bioactive natural compounds, like collagen and hyaluronic acid, and pharmacologically active substances (doxycycline or npAg). Dynamic (oscillatory) rheometry confirmed the strong gel-like properties of the obtained hydrogel membranes. Samples containing low-dose DOXY showed a swelling index of 285.68 ± 6.99%, a degradation rate of 71.6 ± 0.91% at 20 h, and achieved a cumulative drug release of approximately 90% at pH 7.4 and 80% at pH 8.3 within 12 h. The addition of npAg influenced the physical properties of the hydrogel membranes. Furthermore, the samples containing DOXY demonstrated exceptional antimicrobial efficacy against seven selected bacterial strains commonly associated with wound infections and complications. Biocompatibility assessments revealed that the samples exhibited over 80% cell viability. However, the addition of smaller-sized nanoparticles led to decreased cellular viability. The obtained biohybrid hydrogel membranes show favorable properties that render them suitable for application as wound dressings.

10.
J Clin Med ; 11(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36143043

RESUMO

Background: The oral squamous cell carcinoma (OSCC) tumor microenvironment (TME) is a complex interweb of cells and mediators balancing carcinogenesis, inflammation, and the immune response. However, cytokines are not only secreted within the TME but also released by a variety of other cells that do not comprise the TME; therefore, a thorough assessment of humoral changes in OSCC should include the measurement of serum cytokines. Methods: We assessed the role of various serum cytokines in the evolution of OSCC, before and after treatment, versus a control group. We measured the serum concentrations of MIP-1α, IL-1ß, IL-4, IL-6, IL-8, IL-10, and TNF-α. Results: Significantly higher values (p < 0.01) were noted for IL-1ß, IL-6, IL-8, IL-10, and TNF-α in the OSCC group before treatment (n = 13) compared with the control group (n = 14), and the increased concentrations persisted after treatment (n = 11). Furthermore, the variations in the values of MIP-1α, IL-1ß, IL-10, and TNF-α are correlated both before and after treatment (p < 0.01). In the pretherapeutic group, IL-6 and IL-8 concentrations also correlate with IL-1ß and IL-10 serum levels (p < 0.01), while in the posttherapeutic group, IL-4 varies with MIP-1α and TNF-α (p < 0.01). Conclusion: In OSCC patients, serum cytokine levels are significantly higher compared with control, but they are not significantly altered by treatment, therefore implying that they are also influenced by systemic factors. The interactions between all involved cytokines and the various pathways they regulate warrant further studies to clarify their definitive roles.

11.
Metabolites ; 12(4)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35448516

RESUMO

Fatty acids (FAs) have been shown to exhibit a pro-inflammatory response in various cell types, but astrocytes have been mostly overlooked. FAs, both saturated and unsaturated, have previously been shown to induce pro-inflammatory responses in astrocytes at high concentrations of hundreds of µg/mL. SSO (Sulfo-N-succinimidyl Oleate sodium), an inhibitor of FA translocase CD36, has been shown to prevent inflammation in the mouse brain by acting on local microglia and infiltrating monocytes. Our hypothesis was that SSO treatment would also impact astrocyte pro-inflammatory response to FA. In order to verify our assumption, we evaluated the expression of pro- and anti-inflammatory cytokines in normal human astrocyte cell culture pre-treated (or not) with SSO, and then exposed to low concentrations of both saturated (palmitic acid) and unsaturated (oleic acid) FAs. As a positive control for astrocyte inflammation, we used fibrillary amyloid. Neither Aß 1-42 nor FAs induced CD36 protein expression in human astrocytes in cell culture At low concentrations, both types of FAs induced IL-8 protein secretion, and this effect was specifically inhibited by SSO pre-treatment. In conclusion, low concentrations of oleic acid are able to induce an early increase in IL-8 expression in normal human astrocytes, which is specifically downregulated by SSO.

12.
J Pers Med ; 11(4)2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33917064

RESUMO

Past decades demonstrate an increasing interest in herbal remedies in the public eye, with as many as 80% of people worldwide using these remedies as healthcare products, including those for skin health. Sea buckthorn and its derived products (oil; alcoholic extracts), rich in flavonoids and essential fatty acids, are among these healthcare products. Specifically, sea buckthorn and its derivatives are reported to have antioxidant and antitumor activity in dysplastic skin cells. On the other hand, evidence suggests that the alteration of lipid metabolism is related to increased malignant behavior. Given the paradoxical involvement of lipids in health and disease, we investigated how sea-buckthorn seed oil, rich in long-chain fatty acids, modifies the proliferation of normal and dysplastic skin cells in basal conditions, as well as under ultraviolet A (UVA) radiation. Using real-time analysis of normal and dysplastic human keratinocytes, we showed that sea-buckthorn seed oil stimulated the proliferation of dysplastic cells, while it also impaired the ability of both normal and dysplastic cells to migrate over a denuded area. Furthermore, UVA exposure increased the expression of CD36/SR-B2, a long-chain fatty acid translocator that is related to the metastatic behavior of tumor cells.

13.
Front Pharmacol ; 12: 737571, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34712136

RESUMO

In recent years, natural product's research gained momentum, fueled by technological advancement and open availability of research data. To date, sea buckthorn (Hippophae rhamnoides L. [Elaeagnaceae]) plant parts, especially berries, are well characterized and repeatedly tested for antioxidant activity and regenerative properties, in various cell types and tissues. However, fatty acids (FA) have been less investigated in term of biological effects, although, they are important bioactive components of the sea buckthorn fruit and oil. The aim of our work was to determine whether sea buckthorn seed oil is a suitable source of FA with regenerative properties on normal skin cells. Using high-performance liquid chromatography (HPLC) and liquid chromatography - mass spectrometry (LC-MS), we purified and characterized four fractions enriched in saturated (palmitic) and non-saturated (linoleic, alfa-linolenic, oleic) FA, which were tested for cytotoxicity, cytokine and growth factor production, and regenerative effect on normal keratinocytes and skin fibroblasts. Evidence is presented that the palmitic acid enriched fraction was a suitable sea buckthorn seed oil derived product with cell proliferation properties on both skin cell types.

14.
Roum Arch Microbiol Immunol ; 69(1): 13-9, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21053779

RESUMO

UNLABELLED: There is an emerging trend in immunotoxicological studies to use the multiplex technologies for testing the safety and the efficacy of new pharmaceuticals by using cytokines profiling as biomarker. The Luminex 200 xMAP (multi-analyte profiling) technology provides simultaneous measurement of multiple cytokines in small sample volumes, expressing rapidly the differences between various test compounds. The aim is to develop and validate the Luminex 200 multiplex immunoassays by correlation with ELISA (enzyme-linked immunosorbent assays) for implementation in evaluating cytokine profiling in immunotoxicological studies in vitro. METHODS: Human peripheral whole blood from healthy subject diluted 1+4 with RPMI 1640 was cultured 48 hours in 28 experimental variants: control, in presence of mitogens, bioflavonoid extracts (from Crataegus monogyna and Echinacea purpurea) as cytoprotectors and with a toxic compound [Pb(NO3)2]), separately or variously combined. IL-1beta and IL-2 were comparatively performed by xMAP and ELISA immunoassays from the same sample to initialize validation of multiplex cytokine panel: IL-1beta, IL-2, IL-4, IL-6, IL-8, IL-10, TNF-alpha, IFN-gamma, usually performed by Luminex 200 system in our immunotoxicological studies. The results indicate similarly typed trends of cytokine values obtained by both methods, with comparable relative changes in presence of mitogens, bioflavonoids and toxic, respectively. Although xMAP absolute cytokine values were higher than ELISA values, the correlation between multiplexed assay and ELISA was good for IL-1beta and IL-2 with positive correlation coefficients near to 1. Conclusions. Quantitative differences between absolute values for IL-1beta and IL-2 obtained by xMAP and ELISA assays are found, but the relative values are comparable and the two methods keep similar trends in similar exposure conditions. The performance parameters of the xMAP assay and the good correlation coefficients with the "gold standard" ELISA recommend to validate the multiplex assay for analyzing cytokine profiles in immunotoxicological studies in vitro.


Assuntos
Citocinas/análise , Imunoensaio/métodos , Imunoensaio/normas , Kit de Reagentes para Diagnóstico/normas , Biomarcadores/análise , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Flavonoides/imunologia , Humanos , Interleucina-1beta/análise , Interleucina-2/análise , Leucócitos Mononucleares , Sensibilidade e Especificidade
15.
Oncol Lett ; 17(5): 4060-4067, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30944599

RESUMO

Neoangiogenesis plays an important role in cutaneous lymphoma pathogenesis. Cutaneous T-cell lymphoma (CTCL) is characterized by the presence of malignant T-cell clones in the skin. Vascular microenvironment of lymphomas accelerates neoangiogenesis through several factors released by tumoral cells: VEGF family, bFGF and PIGF. Tumor stroma (fibroblasts, inflammatory and immune cells) also plays a crucial role, by providing additional angiogenic factors. The angiogenic process through the VEGF-VEGFR axis can promote survival, proliferation and metastasis via autocrine mechanisms in cutaneous lymphomas. Microvascular density (MVD) measures the neo-vascularization of cutaneous lymphoma, generated by the response of tumor cells, proangiogenic stromal cells, and benign T/B lymphocytes within the tumor inflammatory infiltrate. Pro-angiogenic proteins have been found to indicate the evolution and prognosis in patients with CTCL. In conclusion, anti-angiogenic therapeutic protocols can target tumor vasculature or malignant tumor cells directly or through a large number of combinations with other drugs. The integration of proteomics into clinical practice based on high-throughput technologies leads to the development of personalized medicine, adapting the specific biomarkers to the application of cancer-type specific individual drug targets.

16.
Materials (Basel) ; 12(22)2019 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-31717621

RESUMO

Recently, a large spectrum of biomaterials emerged, with emphasis on various pure, blended, or doped calcium phosphates (CaPs). Although basic cytocompatibility testing protocols are referred by International Organization for Standardization (ISO) 10993 (parts 1-22), rigorous in vitro testing using cutting-edge technologies should be carried out in order to fully understand the behavior of various biomaterials (whether in bulk or low-dimensional object form) and to better gauge their outcome when implanted. In this review, current molecular techniques are assessed for the in-depth characterization of angiogenic potential, osteogenic capability, and the modulation of oxidative stress and inflammation properties of CaPs and their cation- and/or anion-substituted derivatives. Using such techniques, mechanisms of action of these compounds can be deciphered, highlighting the signaling pathway activation, cross-talk, and modulation by microRNA expression, which in turn can safely pave the road toward a better filtering of the truly functional, application-ready innovative therapeutic bioceramic-based solutions.

17.
Biomed Res Int ; 2018: 7801202, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30069479

RESUMO

Metastasis requires cellular changes related to cell-to-cell and cell-to-matrix adhesion, immune surveillance, activation of growth and survival signalling pathways, and epigenetic modifications. In addition to tumour cells, tumour stroma is also modified in relationship to the primary tumour as well as to distant metastatic sites (forming a metastatic niche). A common denominator of most stromal partners in tumour progression is CD36, a scavenger receptor for fatty acid uptake that modulates cell-to-extracellular matrix attachment, stromal cell fate (for adipocytes, endothelial cells), TGFß activation, and immune signalling. CD36 has been repeatedly proposed as a prognostic marker in various cancers, mostly of epithelial origin (breast, prostate, ovary, and colon) and also for hepatic carcinoma and gliomas. Data gathered in preclinical models of various cancers have shown that blocking CD36 might prove beneficial in stopping metastasis spread. However, targeting the receptor in clinical trials with thrombospondin mimetic peptides has proven ineffective, and monoclonal antibodies are not yet available for patient use. This review presents data to support CD36 as a potential prognostic biomarker in cancer, its current stage towards achieving bona fide biomarker status, and knowledge gaps that must be filled before further advancement towards clinical practice.


Assuntos
Biomarcadores/análise , Antígenos CD36/análise , Metástase Neoplásica , Neoplasias/patologia , Feminino , Humanos , Masculino , Prognóstico , Células Estromais
18.
J Immunol Res ; 2018: 2498576, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30246033

RESUMO

Caveolin-1 (CAV1) is the scaffold protein of caveolae, which are minute invaginations of the cell membrane that are involved in endocytosis, cell signaling, and endothelial-mediated inflammation. CAV1 has also been reported to have a dual role as either a tumor suppressor or tumor promoter, depending on the type of cancer. Inflammation is an important player in tumor progression, but the role of caveolin-1 in generating an inflammatory milieu remains poorly characterized. We used a caveolin-1-knockout (CAV1-/-) mouse model to assess the inflammatory status via the quantification of the pro- and anti-inflammatory cytokine levels, as well as the ability of circulating lymphocytes to respond to nonspecific stimuli by producing cytokines. Here, we report that the CAV1-/- mice were characterized by a low-grade systemic proinflammatory status, with a moderate increase in the IL-6, TNF-α, and IL-12p70 levels. CAV1-/- circulating lymphocytes were more prone to cytokine production upon nonspecific stimulation than the wild-type lymphocytes. These results show that CAV1 involvement in cell homeostasis is more complex than previously revealed, as it plays a role in the inflammatory process. These findings indicate that the CAV1-/- mouse model could prove to be a useful tool for inflammation-related studies.


Assuntos
Cavéolas/metabolismo , Caveolina 1/genética , Inflamação/genética , Linfócitos/imunologia , Animais , Caveolina 1/metabolismo , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Endocitose , Homeostase/genética , Humanos , Mediadores da Inflamação/metabolismo , Ativação Linfocitária , Camundongos , Camundongos Knockout
19.
J Immunol Res ; 2018: 2180373, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30271792

RESUMO

Persistent, low-grade inflammation is now considered a hallmark feature of chronic kidney disease (CKD), being involved in the development of all-cause mortality of these patients. Although substantial improvements have been made in clinical care, CKD remains a major public health burden, affecting 10-15% of the population, and its prevalence is constantly growing. Due to its insidious nature, CKD is rarely diagnosed in early stages, and once developed, its progression is unfortunately irreversible. There are many factors that contribute to the setting of the inflammatory status in CKD, including increased production of proinflammatory cytokines, oxidative stress and acidosis, chronic and recurrent infections, altered metabolism of adipose tissue, and last but not least, gut microbiota dysbiosis, an underestimated source of microinflammation. In this scenario, a huge step forward was made by the increasing progression of omics approaches, specially designed for identification of biomarkers useful for early diagnostic and follow-up. Recent omics advances could provide novel insights in deciphering the disease pathophysiology; thus, identification of circulating biomarker panels using state-of-the-art proteomic technologies could improve CKD early diagnosis, monitoring, and prognostics. This review aims to summarize the recent knowledge regarding the relationship between inflammation and CKD, highlighting the current proteomic approaches, as well as the inflammasomes and gut microbiota dysbiosis involvement in the setting of CKD, culminating with the troubling bidirectional connection between CKD and renal malignancy, raised on the background of an inflammatory condition.


Assuntos
Microbioma Gastrointestinal/imunologia , Inflamação/imunologia , Insuficiência Renal Crônica/diagnóstico , Biomarcadores/metabolismo , Citocinas/metabolismo , Progressão da Doença , Humanos , Estresse Oxidativo , Valor Preditivo dos Testes , Prognóstico , Proteômica , Insuficiência Renal Crônica/imunologia , Resultado do Tratamento
20.
Oncotarget ; 8(11): 18497-18512, 2017 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-28061466

RESUMO

The clinical and fundamental research in prostate cancer - the most common urological cancer in men - is currently entering the proteomic and genomic era. The focus has switched from one single marker (PSA) to panels of biomarkers (including proteins involved in ribosomal function and heat shock proteins). Novel genetic markers (such as Transmembrane protease serine 2 (TMPRSS2)-ERG fusion gene mRNA) or prostate cancer gene 3 (PCA3) had already entered the clinical practice, raising the question whether subsequent protein changes impact the evolution of the disease and the response to treatment. Proteomic technologies such as MALDI-MS, SELDI-MS, i-TRAQ allow a qualitative/quantitative analysis of the proteome variations, in both serum and tumor tissue. A new trend in prostate cancer research is proteomic analysis of prostasomes (prostate-specific exosomes), for the discovery of new biomarkers. This paper provides an update of novel clinical tests used in research and clinical diagnostic, as well as of potential tissue or fluid biomarkers provided by extensive proteomic research data.


Assuntos
Biomarcadores Tumorais/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias da Próstata/metabolismo , Humanos , Masculino , Neoplasias da Próstata/patologia , Proteômica/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA