Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mar Drugs ; 19(6)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34073758

RESUMO

Sponges form symbiotic relationships with diverse and abundant microbial communities. Cyanobacteria are among the most important members of the microbial communities that are associated with sponges. Here, we performed a genus-wide comparative genomic analysis of the newly described marine benthic cyanobacterial genus Leptothoe (Synechococcales). We obtained draft genomes from Le. kymatousa TAU-MAC 1615 and Le. spongobia TAU-MAC 1115, isolated from marine sponges. We identified five additional Leptothoe genomes, host-associated or free-living, using a phylogenomic approach, and the comparison of all genomes showed that the sponge-associated strains display features of a symbiotic lifestyle. Le. kymatousa and Le. spongobia have undergone genome reduction; they harbored considerably fewer genes encoding for (i) cofactors, vitamins, prosthetic groups, pigments, proteins, and amino acid biosynthesis; (ii) DNA repair; (iii) antioxidant enzymes; and (iv) biosynthesis of capsular and extracellular polysaccharides. They have also lost several genes related to chemotaxis and motility. Eukaryotic-like proteins, such as ankyrin repeats, playing important roles in sponge-symbiont interactions, were identified in sponge-associated Leptothoe genomes. The sponge-associated Leptothoe stains harbored biosynthetic gene clusters encoding novel natural products despite genome reduction. Comparisons of the biosynthetic capacities of Leptothoe with chemically rich cyanobacteria revealed that Leptothoe is another promising marine cyanobacterium for the biosynthesis of novel natural products.


Assuntos
Cianobactérias/genética , Cianobactérias/metabolismo , Genoma Bacteriano , Poríferos/microbiologia , Animais , Produtos Biológicos/metabolismo , Filogenia , Metabolismo Secundário , Simbiose
2.
Microb Genom ; 9(7)2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37417735

RESUMO

Benthic microbial mats dominated by Cyanobacteria are important features of polar lakes. Although culture-independent studies have provided important insights into the diversity of polar Cyanobacteria, only a handful of genomes have been sequenced to date. Here, we applied a genome-resolved metagenomics approach to data obtained from Arctic, sub-Antarctic and Antarctic microbial mats. We recovered 37 metagenome-assembled genomes (MAGs) of Cyanobacteria representing 17 distinct species, most of which are only distantly related to genomes that have been sequenced so far. These include (i) lineages that are common in polar microbial mats such as the filamentous taxa Pseudanabaena, Leptolyngbya, Microcoleus/Tychonema and Phormidium; (ii) the less common taxa Crinalium and Chamaesiphon; (iii) an enigmatic Chroococcales lineage only distantly related to Microcystis; and (iv) an early branching lineage in the order Gloeobacterales that is distributed across the cold biosphere, for which we propose the name Candidatus Sivonenia alaskensis. Our results show that genome-resolved metagenomics is a powerful tool for expanding our understanding of the diversity of Cyanobacteria, especially in understudied remote and extreme environments.


Assuntos
Cianobactérias , Metagenômica , Cianobactérias/genética , Lagos/microbiologia , Metagenoma , Sequência de Bases
3.
Chem Commun (Camb) ; 58(86): 12054-12057, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36193595

RESUMO

Cyanobactins are linear and cyclic post-translationally modified peptides. Here we show that the prenyl-D-Arg-containing autumnalamide A is a member of the cyanobactin family. Biochemical assays demonstrate that the AutF prenyltransferase targets the guanidinium moiety in arginine and homoarginine and is a useful tool for biotechnological applications.


Assuntos
Vias Biossintéticas , Dimetilaliltranstransferase , Dimetilaliltranstransferase/química , Dimetilaliltranstransferase/metabolismo , Arginina/metabolismo , Homoarginina/metabolismo , Guanidina , Peptídeos Cíclicos/química
4.
Toxins (Basel) ; 12(4)2020 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-32290496

RESUMO

Cyanobacteria produce an array of toxins that pose serious health risks to humans and animals. The closely related diazotrophic genera, Anabaena, Dolichospermum, and Aphanizomenon, frequently form poisonous blooms in lakes and brackish waters around the world. These genera form a complex now termed the Anabaena, Dolichospermum, and Aphanizomenon (ADA) clade and produce a greater array of toxins than any other cyanobacteria group. However, taxonomic confusion masks the distribution of toxin biosynthetic pathways in cyanobacteria. Here we obtained 11 new draft genomes to improve the understanding of toxin production in these genera. Comparison of secondary metabolite pathways in all available 31 genomes for these three genera suggests that the ability to produce microcystin, anatoxin-a, and saxitoxin is associated with specific subgroups. Each toxin gene cluster was concentrated or even limited to a certain subgroup within the ADA clade. Our results indicate that members of the ADA clade encode a variety of secondary metabolites following the phylogenetic clustering of constituent species. The newly sequenced members of the ADA clade show that phylogenetic separation of planktonic Dolichospermum and benthic Anabaena is not complete. This underscores the importance of taxonomic revision of Anabaena, Dolichospermum, and Aphanizomenon genera to reflect current phylogenomic understanding.


Assuntos
Toxinas Bacterianas/genética , Cianobactérias/genética , Toxinas Marinhas/genética , Filogenia , Metabolismo Secundário/genética , Anabaena/genética , Anabaena/metabolismo , Aphanizomenon/genética , Aphanizomenon/metabolismo , Toxinas Bacterianas/metabolismo , Cianobactérias/classificação , Cianobactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Toxinas Marinhas/metabolismo , Família Multigênica , Ribotipagem , Especificidade da Espécie
5.
Artigo em Inglês | MEDLINE | ID: mdl-32637401

RESUMO

The commercial release of genetically modified organisms (GMO) requires a prior environmental and human/animal health risk assessment. In Brazil, the National Biotechnology Technical Commission (CTNBio) requires a survey of the area of natural occurrence of wild relatives of the GMO in the Brazilian ecosystems to evaluate the possibility of introgressive hybridization between sexually compatible species. Modern sugarcane cultivars, the focus of this study, derive from a series of hybridization and backcrossing events among Saccharum species. The so-called "Saccharum broad sense" group includes around 40 species from a few genera, including Erianthus, found in various tropical regions, particularly South-Eastern Asia. In Brazil, three native species, originally considered to belong to Erianthus, were reclassified as S. angustifolium (Nees) Trin., S. asperum (Nees) Steud., and S. villosum Steud., based on inflorescence morphology. Thus, we have investigated the potential occurrence of gene flow among the Brazilian Saccharum native species and commercial hybrids as a requisite for GMO commercial release. A comprehensive survey was carried out to map the occurrence of the three native Saccharum species in Brazil, concluding that they are sympatric with sugarcane cultivation only from around 14°S southwards, which precludes most Northeastern sugarcane-producing states from undergoing introgression. Based on phenology, we concluded that the Brazilian Saccharum species are unable to outcross naturally with commercial sugarcane since the overlap between the flowering periods of sugarcane and the native species is limited. A phylogenomic reconstruction based on the full plastid genome sequence showed that the three native Saccharum species are the taxa closest to sugarcane in Brazil, being closer than introduced Erianthus or Miscanthus. A 2-year study on eight nutritional composition traits of the 20 main sugarcane cultivars cultivated in Brazil was carried out in six environments. The minimum and maximum values obtained were, in percent: moisture (62.6-82.5); sucrose (9.65-21.76); crude fiber (8.06-21.03); FDN (7.20-20.68); FDA (4.55-16.90); lipids (0.06-1.59); ash (0.08-2.67); and crude protein (0.18-1.18). Besides a considerable amount of genetic variation and plastic responses, many instances of genotype-by-environment interaction were detected.

6.
Sci Rep ; 9(1): 4888, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30894564

RESUMO

The Baltic Sea is a shallow basin of brackish water in which the spatial salinity gradient is one of the most important factors contributing to species distribution. The Baltic Sea is infamous for its annual cyanobacterial blooms comprised of Nodularia spumigena, Aphanizomenon spp., and Dolichospermum spp. that cause harm, especially for recreational users. To broaden our knowledge of the cyanobacterial adaptation strategies for brackish water environments, we sequenced the entire genome of Dolichospermum sp. UHCC 0315, a species occurring not only in freshwater environments but also in brackish water. Comparative genomics analyses revealed a close association with Dolichospermum sp. UHCC 0090 isolated from a lake in Finland. The genome closure of Dolichospermum sp. UHCC 0315 unraveled a mixture of two subtypes in the original culture, and subtypes exhibited distinct buoyancy phenotypes. Salinity less than 3 g L-1 NaCl enabled proper growth of Dolichospermum sp. UHCC 0315, whereas growth was arrested at moderate salinity (6 g L-1 NaCl). The concentrations of toxins, microcystins, increased at moderate salinity, whereas RNA sequencing data implied that Dolichospermum remodeled its primary metabolism in unfavorable high salinity. Based on our results, the predicted salinity decrease in the Baltic Sea may favor toxic blooms of Dolichospermum spp.


Assuntos
Cianobactérias/genética , Genoma Bacteriano , Águas Salinas , Tolerância ao Sal , Cianobactérias/crescimento & desenvolvimento , Finlândia , Genômica , Oceanos e Mares
8.
Front Microbiol ; 9: 306, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29535689

RESUMO

Cylindrospermopsis raciborskii is a freshwater cyanobacterial species with increasing bloom reports worldwide that are likely due to factors related to climate change. In addition to the deleterious effects of blooms on aquatic ecosystems, the majority of ecotypes can synthesize toxic secondary metabolites causing public health issues. To overcome the harmful effects of C. raciborskii blooms, it is important to advance knowledge of diversity, genetic variation, and evolutionary processes within populations. An efficient approach to exploring this diversity and understanding the evolution of C. raciborskii is to use comparative genomics. Here, we report two new draft genomes of C. raciborskii (strains CENA302 and CENA303) from Brazilian isolates of different origins and explore their molecular diversity, phylogeny, and evolutionary diversification by comparing their genomes with sequences from other strains available in public databases. The results obtained by comparing seven C. raciborskii and the Raphidiopsis brookii D9 genomes revealed a set of conserved core genes and a variable set of accessory genes, such as those involved in the biosynthesis of natural products, heterocyte glycolipid formation, and nitrogen fixation. Gene cluster arrangements related to the biosynthesis of the antifungal cyclic glycosylated lipopeptide hassallidin were identified in four C. raciborskii genomes, including the non-nitrogen fixing strain CENA303. Shifts in gene clusters involved in toxin production according to geographic origins were observed, as well as a lack of nitrogen fixation (nif) and heterocyte glycolipid (hgl) gene clusters in some strains. Single gene phylogeny (16S rRNA sequences) was congruent with phylogeny based on 31 concatenated housekeeping protein sequences, and both analyses have shown, with high support values, that the species C. raciborskii is monophyletic. This comparative genomics study allowed a species-wide view of the biological diversity of C. raciborskii and in some cases linked genome differences to phenotype.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA