Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Molecules ; 29(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38930882

RESUMO

The abnormal deposition of protein in the brain is the central factor in neurodegenerative disorders (NDs). These detrimental aggregates, stemming from the misfolding and subsequent irregular aggregation of α-synuclein protein, are primarily accountable for conditions such as Parkinson's disease, Alzheimer's disease, and dementia. Two-photon-excited (TPE) probes are a promising tool for the early-stage diagnosis of these pathologies as they provide accurate spatial resolution, minimal intrusion, and the ability for prolonged observation. To identify compounds with the potential to function as diagnostic probes using two-photon techniques, we explore three distinct categories of compounds: Hydroxyl azobenzene (AZO-OH); Dicyano-vinyl bithiophene (DCVBT); and Tetra-amino phthalocyanine (PcZnNH2). The molecules were structurally and optically characterized using a multi-technique approach via UV-vis absorption, Raman spectroscopy, three-dimensional fluorescence mapping (PLE), time-resolved photoluminescence (TRPL), and pump and probe measurements. Furthermore, quantum chemical and molecular docking calculations were performed to provide insights into the photophysical properties of the compounds as well as to assess their affinity with the α-synuclein protein. This innovative approach seeks to enhance the accuracy of in vivo probing, contributing to early Parkinson's disease (PD) detection and ultimately allowing for targeted intervention strategies.


Assuntos
Simulação de Acoplamento Molecular , Fótons , alfa-Sinucleína , alfa-Sinucleína/química , Humanos , Agregados Proteicos , Compostos Azo/química , Corantes Fluorescentes/química , Análise Espectral Raman/métodos , Doença de Parkinson/diagnóstico , Doença de Parkinson/metabolismo , Tiofenos/química , Indóis/química , Estrutura Molecular
2.
Anal Chem ; 94(29): 10435-10442, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35848818

RESUMO

The need to find a rapid and worthwhile technique for the in situ detection of the content of delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) in Cannabis sativa L. is an ever-increasing problem in the forensic field. Among all the techniques for the detection of cannabinoids, Raman spectroscopy can be identified as the most cost-effective, fast, noninvasive, and nondestructive. In this study, 42 different samples were analyzed using Raman spectroscopy with 1064 nm excitation wavelength. The use of an IR wavelength laser showed the possibility to clearly identify THC and CBD in fresh samples, without any further processing, knocking out the contribution of the fluorescence generated by visible and near-IR sources. The results allow assigning all the Raman features in THC- and CBD-rich natural samples. The multivariate analysis underlines the high reproducibility of the spectra and the possibility to distinguish immediately the Raman spectra of the two cannabinoid species. Furthermore, the ratio between the Raman bands at 1295/1440 and 1623/1663 cm-1 is identified as an immediate test parameter to evaluate the THC content in the samples.


Assuntos
Canabidiol , Canabinoides , Cannabis , Canabinoides/análise , Cannabis/química , Dronabinol/análise , Reprodutibilidade dos Testes , Análise Espectral Raman
3.
Nano Lett ; 21(7): 2919-2925, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33764074

RESUMO

Symmetry-breaking synthetic controls allow for nanostructure geometries that are counter to the underlying crystal symmetry of a material. If suitably applied, such controls provide the means to drive an isotropic metal along a growth pathway yielding a three-dimensional chiral geometry. Herein, we present a light-driven solution-based synthesis yielding helical gold spirals from substrate-bound seeds. The devised growth mode relies on three separate symmetry-breaking events ushered in by seeds lined with planar defects, a capping agent that severely frustrates early stage growth, and the Coulombic repulsion that occurs when identically charged growth fronts collide. Together they combine to advance a growth pathway in which planar growth emanates from one side of the seed, advances to encircle the seed from both clockwise and counterclockwise directions, and then, upon collision of the two growth fronts, sees one front rise above the other to realize a self-perpetuating three-dimensional spiral structure.

4.
Molecules ; 27(20)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36296421

RESUMO

Heterogeneous photocatalysts have garnered extensive attention as a sustainable way for environmental remediation and energy storage process. Water splitting, solar energy conversion, and pollutant degradation are examples of nowadays applications where semiconductor-based photocatalysts represent a potentially disruptive technology. The exploitation of solar radiation for photocatalysis could generate a strong impact by decreasing the energy demand and simultaneously mitigating the impact of anthropogenic pollutants. However, most of the actual photocatalysts work only on energy radiation in the Near-UV region (<400 nm), and the studies and development of new photocatalysts with high efficiency in the visible range of the spectrum are required. In this regard, hybrid organic/inorganic photocatalysts have emerged as highly potential materials to drastically improve visible photocatalytic efficiency. In this review, we will analyze the state-of-art and the developments of hybrid photocatalysts for energy storage and energy conversion process as well as their application in pollutant degradation and water treatments.


Assuntos
Poluentes Ambientais , Energia Solar , Processos Fotoquímicos , Catálise , Semicondutores
5.
Molecules ; 27(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36432044

RESUMO

The straightforward, continuous-flow synthesis of cyclopropyl carbaldehydes and ketones has been developed starting from 2-hydroxycyclobutanones and aryl thiols. This acid-catalyzed mediated procedure allows access to the multigram and easily scalable synthesis of cyclopropyl adducts under mild conditions, using reusable Amberlyst-35 as a catalyst. The resins, suitably ground and used for filling steel columns, have been characterized via TGA, ATR, SEM and BET analyses to describe the physical-chemical properties of the packed bed and the continuous-flow system in detail. To highlight the synthetic versatility of the arylthiocyclopropyl carbonyl compounds, a series of selective oxidation reactions have been performed to access sulfoxide and sulfone carbaldehyde cyclopropanes, oxiranes and carboxylic acid derivatives.


Assuntos
Ciclopropanos , Cetonas , Estrutura Molecular , Ciclização , Catálise , Ciclopropanos/química
6.
Org Biomol Chem ; 18(19): 3684-3689, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32352131

RESUMO

The continuous flow Norrish-Yang photocyclization of 1,2-diketones has been developed and used for the synthesis of a large number of functionalized 2-hydroxycyclobutanones, under blue light irradiation and employing acetone as a solvent. This eco-friendly procedure represents a valid alternative to the reactions carried out in batches thus reducing the reaction times, the formation of secondary products and simplifying the purification steps. The use of differently substituted diketone compounds has allowed us to obtain a wide range of 2 and 3-functionalized cyclobutanones, thus allowing the evaluation of the scope and limitations of this procedure.

7.
Heliyon ; 10(3): e25707, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38333877

RESUMO

Long afterglow phosphors constitute an emerging class of compounds with wide application in several fields, from photonic to dosimetry, solar energy storage and photocatalysis. In this study, we synthesized and thoroughly characterized a new class of persistent emitting materials, Ca3Ga4O9: xBi3+, yZn2+, zTb3+. Through the utilization of X-ray and Raman spectroscopy, as well as optical measurements including static and time-resolved luminescence, thermoluminescence, and phosphorescence, the effects of the Tb concentration on the optical and structural properties of the material has been deeply studied. A suitable mechanism was proposed to account for the long afterglow emission, wherein Tb3+ and Bi3+ ions occupying the Ca2+ sites serve as recombination centers, facilitating the generation of oxygen defects. Zn2+ in the Ga3+ sites, contribute to the charge balance and generates hole traps in the matrix. The enduring phosphorescence persists for over 3 h following the cessation of UV irradiation, discernible to the naked eye in low-light conditions.

8.
J Colloid Interface Sci ; 634: 402-417, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36542970

RESUMO

In this work, we unveil the fluorescence features of citric acid and urea-based Carbon Dots (CDs) through a photo-physical characterization of nanoparticles synthesized, under solvent-free and open-air conditions, within silica-ordered mesoporous silica, as a potential host for solid-state emitting hybrids. Compared to CDs synthesized without silica matrices and dispersed in water, silica-CD hybrids display a broader emission in the green range whose contribution can be increased by UV and blue laser irradiation. The analysis of hybrids synthesized within different silica (MCM-48 and SBA-15) calls for an active role of the matrix in directing the synthesis toward the formation of CDs with a larger content of graphitic N and imidic groups at the expense of N-pyridinic molecules. As a result, CDs tuned in size and with a larger green emission are obtained in the hybrids and are retained once extracted from the silica matrix and dispersed in water. The kinetics of the photo-physics under UV and blue irradiation of hybrid samples show a photo-assisted formation process leading to a further increase of the relative contribution of the green emission, not observed in the water-dispersed reference samples, suggesting that the porous matrix is involved also in the photo-activated process. Finally, we carried out DFT and TD-DFT calculations on the interaction of silica with selected models of CD emitting centers, like surface functional groups (OH and COOH), dopants (graphitic N), and citric acid-based molecules. The combined experimental and theoretical results clearly indicate the presence of molecular species and surface centers both emitting in the blue and green spectral range, whose relative contribution is tuned by the interaction with the surrounding media.


Assuntos
Grafite , Pontos Quânticos , Carbono , Dióxido de Silício , Água , Ácido Cítrico
9.
Materials (Basel) ; 16(9)2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37176393

RESUMO

Recent developments in lighting and display technologies have led to an increased focus on materials and phosphors with high efficiency, chemical stability, and eco-friendliness. Mechanoluminescence (ML) is a promising technology for new lighting devices, specifically in pressure sensors and displays. CaZnOS has been identified as an efficient ML material, with potential applications as a stress sensor. This study focuses on optimizing the mechanoluminescent properties of CaZnOS:Tb through microwave-assisted synthesis. We successfully synthesized CaZnOS doped with Tb3+ using this method and compared it with samples obtained through conventional solid-state methods. We analyzed the material's characteristics using various techniques to investigate their structural, morphological, and optical properties. We then studied the material's mechanoluminescent properties through single impacts with varying energies. Our results show that materials synthesized through microwave methods exhibit similar optical and, primarily, mechanoluminescent properties, making them suitable for use in photonics applications. The comparison of the microwave and conventional solid-state synthesis methods highlights the potential of microwave-assisted methods to optimize the properties of mechanoluminescent materials for practical applications.

10.
Polymers (Basel) ; 15(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37299335

RESUMO

It is well known that viruses cannot replicate on their own but only inside the cells of target tissues in the organism, resulting in the destruction of the cells or, in some cases, their transformation into cancer cells. While viruses have relatively low resistance in the environment, their ability to survive longer is based on environmental conditions and the type of substrate on which they are deposited. Recently, the potential for safe and efficient viral inactivation by photocatalysis has garnered increasing attention. In this study, the Phenyl carbon nitride/TiO2 heterojunction system, a hybrid organic-inorganic photocatalyst, was utilized to investigate its effectiveness in degrading the flu virus (H1N1). The system was activated by a white-LED lamp, and the process was tested on MDCK cells infected with the flu virus. The results of the study demonstrate the hybrid photocatalyst's ability to cause the virus to degrade, highlighting its effectiveness for safe and efficient viral inactivation in the visible light range. Additionally, the study underscores the advantages of using this hybrid photocatalyst over traditional inorganic photocatalysts, which typically only work in the ultraviolet range.

11.
Heliyon ; 9(12): e22794, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38058441

RESUMO

Fluorescent lighting and optical techniques have been widely utilized to enhance the detection of latent fingerprints. However, the development of new techniques is imperative to expand the range of surfaces from which latent fingerprints can be detected. When relying on traditional methods, fingerprint evidence can remain undetected or even disregarded due to insufficient detection and limited detail, especially when dealing with a luminescent background. In this study, we propose the utilization of optically stimulated luminescence (OSL) applied to a Ba2SiO4 matrix, co-doped with Eu2+ and Dy3+, as a powerful method for visualizing latent fingerprints on various surfaces, including thin plastic bags, rigid duct tape, thin aluminum foil, and glass slices. This technique effectively eliminates any luminescent background and significantly enhances optical imaging. This represents the first successful application of OSL in the development of latent fingerprints, thus paving the way for more efficient and effective forensic techniques in the future.

12.
Nanomaterials (Basel) ; 13(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37110929

RESUMO

The differences between bare carbon dots (CDs) and nitrogen-doped CDs synthesized from citric acid as a precursor are investigated, aiming at understanding the mechanisms of emission and the role of the doping atoms in shaping the optical properties. Despite their appealing emissive features, the origin of the peculiar excitation-dependent luminescence in doped CDs is still debated and intensively being examined. This study focuses on the identification of intrinsic and extrinsic emissive centers by using a multi-technique experimental approach and computational chemistry simulations. As compared to bare CDs, nitrogen doping causes the decrease in the relative content of O-containing functional groups and the formation of both N-related molecular and surface centers that enhance the quantum yield of the material. The optical analysis suggests that the main emission in undoped nanoparticles comes from low-efficient blue centers bonded to the carbogenic core, eventually with surface-attached carbonyl groups, the contribution in the green range being possibly related to larger aromatic domains. On the other hand, the emission features of N-doped CDs are mainly due to the presence of N-related molecules, with the computed absorption transitions calling for imidic rings fused to the carbogenic core as the potential structures for the emission in the green range.

13.
Materials (Basel) ; 15(4)2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35208012

RESUMO

The introduction of N doping atoms in the carbon network of Carbon Dots is known to increase their quantum yield and broaden the emission spectrum, depending on the kind of N bonding introduced. N doping is usually achieved by exploiting amine molecules in the synthesis. In this work, we studied the possibility of introducing a N-N bonding in the carbon network by means of hydrothermal synthesis of citric acid and hydrazine molecules, including hydrated hydrazine, di-methylhydrazine and phenylhydrazine. The experimental optical features show the typical fingerprints of Carbon Dots formation, such as nanometric size, excitation dependent emission, non-single exponential decay of photoluminescence and G and D vibrational bands in the Raman spectra. To explain the reported data, we performed a detailed computational investigation of the possible products of the synthesis, comparing the simulated absorbance spectra with the experimental optical excitation pattern. The computed Raman spectra corroborate the hypothesis of the formation of pyridinone derivatives, among which the formation of small polymeric chains allowed the broad excitation spectra to be experimentally observed.

14.
Materials (Basel) ; 15(16)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36013670

RESUMO

Cadmium yellow degradation afflicts numerous paintings realized between the XIXth and XXth centuries. The degradation process and its kinetics is not completely understood. It consists of chalking, lightening, flaking, spalling, and, in its most deteriorated cases, the formation of a crust over the original yellow paint. In order to improve the comprehension of the process, mock-up samples of CdS in yellow and orange tonalities were studied by means of structural analysis and optical characterization, with the principal techniques used in the field of cultural heritage. Mock ups were artificially degraded with heat treatment and UV exposure. Relevant colorimetric variation appears in CIE Lab coordinates from reflectance spectra. XRD, SEM-EDS, and Raman spectroscopy revealed the formation of cadmium sulfate, whilst time-resolved photoluminescence and pump-probe transient absorption spectroscopy suggest the formation of a defective phase, compatible with Cd vacancies and the formation of both CdO and CdSO4 superficial clusters.

15.
Polymers (Basel) ; 14(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36501659

RESUMO

Porous organic polymers are versatile platforms, easily adaptable to a wide range of applications, from air filtering to energy devices. Their fabrication via vat photopolymerization enables them to control the geometry on a multiscale level, obtaining hierarchical porosity with enhanced surface-to-volume ratio. In this work, a photocurable ink based on 1,6 Hexanediol diacrylate and containing a high internal phase emulsion (HIPE) is presented, employing PLURONIC F-127 as a surfactant to generate stable micelles. Different parameters were studied to assess the effects on the morphology of the pores, the printability and the mechanical properties. The tests performed demonstrates that only water-in-oil emulsions were suitable for 3D printing. Afterwards, 3D complex porous objects were printed with a Digital Light Processing (DLP) system. Structures with large, interconnected, homogeneous porosity were fabricated with high printing precision (300 µm) and shape fidelity, due to the addition of a Radical Scavenger and a UV Absorber that improved the 3D printing process. The formulations were then used to build scaffolds with complex architecture to test its application as a filter for CO2 absorption and trapping from environmental air. This was obtained by surface decoration with NaOH nanoparticles. Depending on the surface coverage, tested specimens demonstrated long-lasting absorption efficiency.

16.
Polymers (Basel) ; 13(21)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34771307

RESUMO

The photoreduction of 4-nitrophenol to 4-aminophenol by means of protonated and exfoliated phenyl-doped carbon nitride is reported. Although carbon nitride-based materials have been recognized as efficient photocatalysts, the photoreduction of 4-nitrophenol to 4-aminophenol is not allowed because of the high recombination rate of the photogenerated electron-hole pairs. In this paper, we show the morphology effects on the photoactivity in phenyl-doped carbon nitride. Structural (TEM, XRD, Raman) and optical characterization (absorption, photoluminescence) of the protonated and exfoliated phenyl-doped carbon nitride (hereafter pePhCN) is reported. The increased photocatalytic efficiency, with respect to the bulk material, is underlined by the calculation of the kinetic constant of the photoreduction process (2.78 × 10-1 min-1 and 3.54 × 10-3 min-1) for pePhCN and bulk PhCN, respectively. Finally, the detailed mechanism of the photoreduction process of 4-nitrophenol to 4-aminophenol by modified phenyl carbon nitride is proposed.

17.
ACS Omega ; 5(19): 10958-10964, 2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32455216

RESUMO

Citrazinic acid (CZA) is a weakly fluorescent molecular compound whose optical properties are dependent on aggregation states and chemical environment. This molecule and its derivatives have been recently identified as the source of the intense blue emission of carbon dots obtained from citric acid with a nitrogen source, such as ammonia or urea. Citrazinic acid has a strong tendency to aggregate and form tautomers whose optical properties are largely unexplored. At extreme acidic and basic pH values, we have observed an "anomalous" optical response of citrazinic acid, attributed to the formation of aggregates from the tautomers. We have characterized the molecule, both at pH = 1 and 14, using UV-vis, NMR, steady-state, and time-resolved fluorescence spectroscopy. At extremely low pH values, the protonation causes luminescence quenching and the appearance of new emissions. On the contrary, high pH values are responsible for deprotonation and splitting of the excitation spectra.

18.
Org Lett ; 21(18): 7329-7332, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31539929

RESUMO

A general strategy for the synthesis of indolyl cyclopropanecarbaldehydes and ketones via a Brønsted acid-catalyzed indole nucleophilic addition/ring-contraction reaction sequence has been exploited. The procedure leads to a wide panel of cyclopropyl carbonyl compounds in generally high yields with a broad substrate scope.

19.
Chem Commun (Camb) ; 54(96): 13547-13550, 2018 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-30443650

RESUMO

A general strategy for the synthesis of arylthio cyclopropyl carbaldehydes and ketones via a Brønsted acid catalyzed arylthiol addition/ring contraction reaction sequence has been exploited. The procedure led to a wide panel of cyclopropyl carbaldehydes in generally high yields and with broad substrate scope. Mechanistic aspects and synthetic applications of this procedure were investigated.

20.
Org Lett ; 20(23): 7699-7702, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30422665

RESUMO

A unified protocol for the construction of 3-(2-bromoethyl)benzofurans and 2-(benzofuran-3-yl)ethylamines from bis[(trimethylsilyl)oxy]cyclobutene has been developed. This mild and facile strategy was applied for the synthesis of a series of 5-HT serotonin receptor agonists, underlining its potential for the syntheses of bioactive compounds and natural products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA