RESUMO
BACKGROUND: A detailed characterization of patients with COVID-19 living with obesity has not yet been undertaken. We aimed to describe and compare the demographics, medical conditions, and outcomes of COVID-19 patients living with obesity (PLWO) to those of patients living without obesity. METHODS: We conducted a cohort study based on outpatient/inpatient care and claims data from January to June 2020 from Spain, the UK, and the US. We used six databases standardized to the OMOP common data model. We defined two non-mutually exclusive cohorts of patients diagnosed and/or hospitalized with COVID-19; patients were followed from index date to 30 days or death. We report the frequency of demographics, prior medical conditions, and 30-days outcomes (hospitalization, events, and death) by obesity status. RESULTS: We included 627 044 (Spain: 122 058, UK: 2336, and US: 502 650) diagnosed and 160 013 (Spain: 18 197, US: 141 816) hospitalized patients with COVID-19. The prevalence of obesity was higher among patients hospitalized (39.9%, 95%CI: 39.8-40.0) than among those diagnosed with COVID-19 (33.1%; 95%CI: 33.0-33.2). In both cohorts, PLWO were more often female. Hospitalized PLWO were younger than patients without obesity. Overall, COVID-19 PLWO were more likely to have prior medical conditions, present with cardiovascular and respiratory events during hospitalization, or require intensive services compared to COVID-19 patients without obesity. CONCLUSION: We show that PLWO differ from patients without obesity in a wide range of medical conditions and present with more severe forms of COVID-19, with higher hospitalization rates and intensive services requirements. These findings can help guiding preventive strategies of COVID-19 infection and complications and generating hypotheses for causal inference studies.
Assuntos
COVID-19/epidemiologia , Obesidade/epidemiologia , Adolescente , Adulto , Idoso , COVID-19/mortalidade , Estudos de Coortes , Comorbidade , Feminino , Hospitalização , Humanos , Masculino , Pessoa de Meia-Idade , Prevalência , Fatores de Risco , Espanha/epidemiologia , Reino Unido/epidemiologia , Estados Unidos/epidemiologia , Adulto JovemRESUMO
OBJECTIVE: Patients with autoimmune diseases were advised to shield to avoid coronavirus disease 2019 (COVID-19), but information on their prognosis is lacking. We characterized 30-day outcomes and mortality after hospitalization with COVID-19 among patients with prevalent autoimmune diseases, and compared outcomes after hospital admissions among similar patients with seasonal influenza. METHODS: A multinational network cohort study was conducted using electronic health records data from Columbia University Irving Medical Center [USA, Optum (USA), Department of Veterans Affairs (USA), Information System for Research in Primary Care-Hospitalization Linked Data (Spain) and claims data from IQVIA Open Claims (USA) and Health Insurance and Review Assessment (South Korea). All patients with prevalent autoimmune diseases, diagnosed and/or hospitalized between January and June 2020 with COVID-19, and similar patients hospitalized with influenza in 2017-18 were included. Outcomes were death and complications within 30 days of hospitalization. RESULTS: We studied 133 589 patients diagnosed and 48 418 hospitalized with COVID-19 with prevalent autoimmune diseases. Most patients were female, aged ≥50 years with previous comorbidities. The prevalence of hypertension (45.5-93.2%), chronic kidney disease (14.0-52.7%) and heart disease (29.0-83.8%) was higher in hospitalized vs diagnosed patients with COVID-19. Compared with 70 660 hospitalized with influenza, those admitted with COVID-19 had more respiratory complications including pneumonia and acute respiratory distress syndrome, and higher 30-day mortality (2.2-4.3% vs 6.32-24.6%). CONCLUSION: Compared with influenza, COVID-19 is a more severe disease, leading to more complications and higher mortality.
Assuntos
Doenças Autoimunes/mortalidade , Doenças Autoimunes/virologia , COVID-19/mortalidade , Hospitalização/estatística & dados numéricos , Influenza Humana/mortalidade , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/imunologia , Estudos de Coortes , Feminino , Humanos , Influenza Humana/imunologia , Masculino , Pessoa de Meia-Idade , Prevalência , Prognóstico , República da Coreia/epidemiologia , SARS-CoV-2 , Espanha/epidemiologia , Estados Unidos/epidemiologia , Adulto JovemRESUMO
Neuronal damage secondary to traumatic brain injury (TBI) is a rapidly evolving condition, which requires therapeutic decisions based on the timely identification of clinical deterioration. Changes in S100B biomarker levels are associated with TBI severity and patient outcome. The S100B quantification is often difficult since standard immunoassays are time-consuming, costly, and require extensive expertise. A zero-length cross-linking approach on a cysteamine self-assembled monolayer (SAM) was performed to immobilize anti-S100B monoclonal antibodies onto both planar (AuEs) and interdigitated (AuIDEs) gold electrodes via carbonyl-bond. Surface characterization was performed by atomic force microscopy (AFM) and specular-reflectance FTIR for each functionalization step. Biosensor response was studied using the change in charge-transfer resistance (Rct) from electrochemical impedance spectroscopy (EIS) in potassium ferrocyanide, with [S100B] ranging 10-1000 pg/mL. A single-frequency analysis for capacitances was also performed in AuIDEs. Full factorial designs were applied to assess biosensor sensitivity, specificity, and limit-of-detection (LOD). Higher Rct values were found with increased S100B concentration in both platforms. LODs were 18 pg/mL(AuES) and 6 pg/mL(AuIDEs). AuIDEs provide a simpler manufacturing protocol, with reduced fabrication time and possibly costs, simpler electrochemical response analysis, and could be used for single-frequency analysis for monitoring capacitance changes related to S100B levels.
RESUMO
In response to the challenges set forth by the CEGS N-GRID 2016 Shared Task in Clinical Natural Language Processing, we describe a framework to automatically classify initial psychiatric evaluation records to one of four positive valence system severities: absent, mild, moderate, or severe. We used a dataset provided by the event organizers to develop a framework comprised of natural language processing (NLP) modules and 3 predictive models (two decision tree models and one Bayesian network model) used in the competition. We also developed two additional predictive models for comparison purpose. To evaluate our framework, we employed a blind test dataset provided by the 2016 CEGS N-GRID. The predictive scores, measured by the macro averaged-inverse normalized mean absolute error score, from the two decision trees and Naïve Bayes models were 82.56%, 82.18%, and 80.56%, respectively. The proposed framework in this paper can potentially be applied to other predictive tasks for processing initial psychiatric evaluation records, such as predicting 30-day psychiatric readmissions.
Assuntos
Modelos Psicológicos , Teorema de Bayes , Humanos , Processamento de Linguagem Natural , Índice de Gravidade de DoençaRESUMO
OBJECTIVE: Development of electronic health records (EHR)-based machine learning models for pediatric inpatients is challenged by limited training data. Self-supervised learning using adult data may be a promising approach to creating robust pediatric prediction models. The primary objective was to determine whether a self-supervised model trained in adult inpatients was noninferior to logistic regression models trained in pediatric inpatients, for pediatric inpatient clinical prediction tasks. MATERIALS AND METHODS: This retrospective cohort study used EHR data and included patients with at least one admission to an inpatient unit. One admission per patient was randomly selected. Adult inpatients were 18 years or older while pediatric inpatients were more than 28 days and less than 18 years. Admissions were temporally split into training (January 1, 2008 to December 31, 2019), validation (January 1, 2020 to December 31, 2020), and test (January 1, 2021 to August 1, 2022) sets. Primary comparison was a self-supervised model trained in adult inpatients versus count-based logistic regression models trained in pediatric inpatients. Primary outcome was mean area-under-the-receiver-operating-characteristic-curve (AUROC) for 11 distinct clinical outcomes. Models were evaluated in pediatric inpatients. RESULTS: When evaluated in pediatric inpatients, mean AUROC of self-supervised model trained in adult inpatients (0.902) was noninferior to count-based logistic regression models trained in pediatric inpatients (0.868) (mean difference = 0.034, 95% CI=0.014-0.057; P < .001 for noninferiority and P = .006 for superiority). CONCLUSIONS: Self-supervised learning in adult inpatients was noninferior to logistic regression models trained in pediatric inpatients. This finding suggests transferability of self-supervised models trained in adult patients to pediatric patients, without requiring costly model retraining.
Assuntos
Pacientes Internados , Aprendizado de Máquina , Humanos , Adulto , Criança , Estudos Retrospectivos , Aprendizado de Máquina Supervisionado , Registros Eletrônicos de SaúdeRESUMO
Objective: To describe the infrastructure, tools, and services developed at Stanford Medicine to maintain its data science ecosystem and research patient data repository for clinical and translational research. Materials and Methods: The data science ecosystem, dubbed the Stanford Data Science Resources (SDSR), includes infrastructure and tools to create, search, retrieve, and analyze patient data, as well as services for data deidentification, linkage, and processing to extract high-value information from healthcare IT systems. Data are made available via self-service and concierge access, on HIPAA compliant secure computing infrastructure supported by in-depth user training. Results: The Stanford Medicine Research Data Repository (STARR) functions as the SDSR data integration point, and includes electronic medical records, clinical images, text, bedside monitoring data and HL7 messages. SDSR tools include tools for electronic phenotyping, cohort building, and a search engine for patient timelines. The SDSR supports patient data collection, reproducible research, and teaching using healthcare data, and facilitates industry collaborations and large-scale observational studies. Discussion: Research patient data repositories and their underlying data science infrastructure are essential to realizing a learning health system and advancing the mission of academic medical centers. Challenges to maintaining the SDSR include ensuring sufficient financial support while providing researchers and clinicians with maximal access to data and digital infrastructure, balancing tool development with user training, and supporting the diverse needs of users. Conclusion: Our experience maintaining the SDSR offers a case study for academic medical centers developing data science and research informatics infrastructure.
RESUMO
Importance: Ranitidine, the most widely used histamine-2 receptor antagonist (H2RA), was withdrawn because of N-nitrosodimethylamine impurity in 2020. Given the worldwide exposure to this drug, the potential risk of cancer development associated with the intake of known carcinogens is an important epidemiological concern. Objective: To examine the comparative risk of cancer associated with the use of ranitidine vs other H2RAs. Design, Setting, and Participants: This new-user active comparator international network cohort study was conducted using 3 health claims and 9 electronic health record databases from the US, the United Kingdom, Germany, Spain, France, South Korea, and Taiwan. Large-scale propensity score (PS) matching was used to minimize confounding of the observed covariates with negative control outcomes. Empirical calibration was performed to account for unobserved confounding. All databases were mapped to a common data model. Database-specific estimates were combined using random-effects meta-analysis. Participants included individuals aged at least 20 years with no history of cancer who used H2RAs for more than 30 days from January 1986 to December 2020, with a 1-year washout period. Data were analyzed from April to September 2021. Exposure: The main exposure was use of ranitidine vs other H2RAs (famotidine, lafutidine, nizatidine, and roxatidine). Main Outcomes and Measures: The primary outcome was incidence of any cancer, except nonmelanoma skin cancer. Secondary outcomes included all cancer except thyroid cancer, 16 cancer subtypes, and all-cause mortality. Results: Among 1â¯183â¯999 individuals in 11 databases, 909â¯168 individuals (mean age, 56.1 years; 507â¯316 [55.8%] women) were identified as new users of ranitidine, and 274â¯831 individuals (mean age, 58.0 years; 145â¯935 [53.1%] women) were identified as new users of other H2RAs. Crude incidence rates of cancer were 14.30 events per 1000 person-years (PYs) in ranitidine users and 15.03 events per 1000 PYs among other H2RA users. After PS matching, cancer risk was similar in ranitidine compared with other H2RA users (incidence, 15.92 events per 1000 PYs vs 15.65 events per 1000 PYs; calibrated meta-analytic hazard ratio, 1.04; 95% CI, 0.97-1.12). No significant associations were found between ranitidine use and any secondary outcomes after calibration. Conclusions and Relevance: In this cohort study, ranitidine use was not associated with an increased risk of cancer compared with the use of other H2RAs. Further research is needed on the long-term association of ranitidine with cancer development.
Assuntos
Neoplasias Cutâneas , Neoplasias da Glândula Tireoide , Feminino , Humanos , Pessoa de Meia-Idade , Masculino , Ranitidina/efeitos adversos , Estudos de Coortes , Antagonistas dos Receptores H2 da Histamina/efeitos adversosRESUMO
Objective: To assess the uptake of second line antihyperglycaemic drugs among patients with type 2 diabetes mellitus who are receiving metformin. Design: Federated pharmacoepidemiological evaluation in LEGEND-T2DM. Setting: 10 US and seven non-US electronic health record and administrative claims databases in the Observational Health Data Sciences and Informatics network in eight countries from 2011 to the end of 2021. Participants: 4.8 million patients (≥18 years) across US and non-US based databases with type 2 diabetes mellitus who had received metformin monotherapy and had initiated second line treatments. Exposure: The exposure used to evaluate each database was calendar year trends, with the years in the study that were specific to each cohort. Main outcomes measures: The outcome was the incidence of second line antihyperglycaemic drug use (ie, glucagon-like peptide-1 receptor agonists, sodium-glucose cotransporter-2 inhibitors, dipeptidyl peptidase-4 inhibitors, and sulfonylureas) among individuals who were already receiving treatment with metformin. The relative drug class level uptake across cardiovascular risk groups was also evaluated. Results: 4.6 million patients were identified in US databases, 61 382 from Spain, 32 442 from Germany, 25 173 from the UK, 13 270 from France, 5580 from Scotland, 4614 from Hong Kong, and 2322 from Australia. During 2011-21, the combined proportional initiation of the cardioprotective antihyperglycaemic drugs (glucagon-like peptide-1 receptor agonists and sodium-glucose cotransporter-2 inhibitors) increased across all data sources, with the combined initiation of these drugs as second line drugs in 2021 ranging from 35.2% to 68.2% in the US databases, 15.4% in France, 34.7% in Spain, 50.1% in Germany, and 54.8% in Scotland. From 2016 to 2021, in some US and non-US databases, uptake of glucagon-like peptide-1 receptor agonists and sodium-glucose cotransporter-2 inhibitors increased more significantly among populations with no cardiovascular disease compared with patients with established cardiovascular disease. No data source provided evidence of a greater increase in the uptake of these two drug classes in populations with cardiovascular disease compared with no cardiovascular disease. Conclusions: Despite the increase in overall uptake of cardioprotective antihyperglycaemic drugs as second line treatments for type 2 diabetes mellitus, their uptake was lower in patients with cardiovascular disease than in people with no cardiovascular disease over the past decade. A strategy is needed to ensure that medication use is concordant with guideline recommendations to improve outcomes of patients with type 2 diabetes mellitus.
RESUMO
Background: Adverse events of special interest (AESIs) were pre-specified to be monitored for the COVID-19 vaccines. Some AESIs are not only associated with the vaccines, but with COVID-19. Our aim was to characterise the incidence rates of AESIs following SARS-CoV-2 infection in patients and compare these to historical rates in the general population. Methods: A multi-national cohort study with data from primary care, electronic health records, and insurance claims mapped to a common data model. This study's evidence was collected between Jan 1, 2017 and the conclusion of each database (which ranged from Jul 2020 to May 2022). The 16 pre-specified prevalent AESIs were: acute myocardial infarction, anaphylaxis, appendicitis, Bell's palsy, deep vein thrombosis, disseminated intravascular coagulation, encephalomyelitis, Guillain- Barré syndrome, haemorrhagic stroke, non-haemorrhagic stroke, immune thrombocytopenia, myocarditis/pericarditis, narcolepsy, pulmonary embolism, transverse myelitis, and thrombosis with thrombocytopenia. Age-sex standardised incidence rate ratios (SIR) were estimated to compare post-COVID-19 to pre-pandemic rates in each of the databases. Findings: Substantial heterogeneity by age was seen for AESI rates, with some clearly increasing with age but others following the opposite trend. Similarly, differences were also observed across databases for same health outcome and age-sex strata. All studied AESIs appeared consistently more common in the post-COVID-19 compared to the historical cohorts, with related meta-analytic SIRs ranging from 1.32 (1.05 to 1.66) for narcolepsy to 11.70 (10.10 to 13.70) for pulmonary embolism. Interpretation: Our findings suggest all AESIs are more common after COVID-19 than in the general population. Thromboembolic events were particularly common, and over 10-fold more so. More research is needed to contextualise post-COVID-19 complications in the longer term. Funding: None.
RESUMO
Purpose: Routinely collected real world data (RWD) have great utility in aiding the novel coronavirus disease (COVID-19) pandemic response. Here we present the international Observational Health Data Sciences and Informatics (OHDSI) Characterizing Health Associated Risks and Your Baseline Disease In SARS-COV-2 (CHARYBDIS) framework for standardisation and analysis of COVID-19 RWD. Patients and Methods: We conducted a descriptive retrospective database study using a federated network of data partners in the United States, Europe (the Netherlands, Spain, the UK, Germany, France and Italy) and Asia (South Korea and China). The study protocol and analytical package were released on 11th June 2020 and are iteratively updated via GitHub. We identified three non-mutually exclusive cohorts of 4,537,153 individuals with a clinical COVID-19 diagnosis or positive test, 886,193 hospitalized with COVID-19, and 113,627 hospitalized with COVID-19 requiring intensive services. Results: We aggregated over 22,000 unique characteristics describing patients with COVID-19. All comorbidities, symptoms, medications, and outcomes are described by cohort in aggregate counts and are readily available online. Globally, we observed similarities in the USA and Europe: more women diagnosed than men but more men hospitalized than women, most diagnosed cases between 25 and 60 years of age versus most hospitalized cases between 60 and 80 years of age. South Korea differed with more women than men hospitalized. Common comorbidities included type 2 diabetes, hypertension, chronic kidney disease and heart disease. Common presenting symptoms were dyspnea, cough and fever. Symptom data availability was more common in hospitalized cohorts than diagnosed. Conclusion: We constructed a global, multi-centre view to describe trends in COVID-19 progression, management and evolution over time. By characterising baseline variability in patients and geography, our work provides critical context that may otherwise be misconstrued as data quality issues. This is important as we perform studies on adverse events of special interest in COVID-19 vaccine surveillance.
RESUMO
OBJECTIVE: To propose a paradigm for a scalable time-aware clinical data search, and to describe the design, implementation and use of a search engine realizing this paradigm. MATERIALS AND METHODS: The Advanced Cohort Engine (ACE) uses a temporal query language and in-memory datastore of patient objects to provide a fast, scalable, and expressive time-aware search. ACE accepts data in the Observational Medicine Outcomes Partnership Common Data Model, and is configurable to balance performance with compute cost. ACE's temporal query language supports automatic query expansion using clinical knowledge graphs. The ACE API can be used with R, Python, Java, HTTP, and a Web UI. RESULTS: ACE offers an expressive query language for complex temporal search across many clinical data types with multiple output options. ACE enables electronic phenotyping and cohort-building with subsecond response times in searching the data of millions of patients for a variety of use cases. DISCUSSION: ACE enables fast, time-aware search using a patient object-centric datastore, thereby overcoming many technical and design shortcomings of relational algebra-based querying. Integrating electronic phenotype development with cohort-building enables a variety of high-value uses for a learning health system. Tradeoffs include the need to learn a new query language and the technical setup burden. CONCLUSION: ACE is a tool that combines a unique query language for time-aware search of longitudinal patient records with a patient object datastore for rapid electronic phenotyping, cohort extraction, and exploratory data analyses.
Assuntos
Prontuários Médicos , Ferramenta de Busca , HumanosRESUMO
BACKGROUND: We described the demographics, cancer subtypes, comorbidities, and outcomes of patients with a history of cancer and coronavirus disease 2019 (COVID-19). Second, we compared patients hospitalized with COVID-19 to patients diagnosed with COVID-19 and patients hospitalized with influenza. METHODS: We conducted a cohort study using eight routinely collected health care databases from Spain and the United States, standardized to the Observational Medical Outcome Partnership common data model. Three cohorts of patients with a history of cancer were included: (i) diagnosed with COVID-19, (ii) hospitalized with COVID-19, and (iii) hospitalized with influenza in 2017 to 2018. Patients were followed from index date to 30 days or death. We reported demographics, cancer subtypes, comorbidities, and 30-day outcomes. RESULTS: We included 366,050 and 119,597 patients diagnosed and hospitalized with COVID-19, respectively. Prostate and breast cancers were the most frequent cancers (range: 5%-18% and 1%-14% in the diagnosed cohort, respectively). Hematologic malignancies were also frequent, with non-Hodgkin's lymphoma being among the five most common cancer subtypes in the diagnosed cohort. Overall, patients were aged above 65 years and had multiple comorbidities. Occurrence of death ranged from 2% to 14% and from 6% to 26% in the diagnosed and hospitalized COVID-19 cohorts, respectively. Patients hospitalized with influenza (n = 67,743) had a similar distribution of cancer subtypes, sex, age, and comorbidities but lower occurrence of adverse events. CONCLUSIONS: Patients with a history of cancer and COVID-19 had multiple comorbidities and a high occurrence of COVID-19-related events. Hematologic malignancies were frequent. IMPACT: This study provides epidemiologic characteristics that can inform clinical care and etiologic studies.
Assuntos
COVID-19/mortalidade , Neoplasias/epidemiologia , Avaliação de Resultados em Cuidados de Saúde/estatística & dados numéricos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Estudos de Coortes , Comorbidade , Bases de Dados Factuais , Feminino , Hospitalização/estatística & dados numéricos , Humanos , Terapia de Imunossupressão/efeitos adversos , Influenza Humana/epidemiologia , Masculino , Pessoa de Meia-Idade , Pandemias , Prevalência , Fatores de Risco , SARS-CoV-2 , Espanha/epidemiologia , Estados Unidos/epidemiologia , Adulto JovemRESUMO
OBJECTIVES: To characterize the demographics, comorbidities, symptoms, in-hospital treatments, and health outcomes among children and adolescents diagnosed or hospitalized with coronavirus disease 2019 (COVID-19) and to compare them in secondary analyses with patients diagnosed with previous seasonal influenza in 2017-2018. METHODS: International network cohort using real-world data from European primary care records (France, Germany, and Spain), South Korean claims and US claims, and hospital databases. We included children and adolescents diagnosed and/or hospitalized with COVID-19 at age <18 between January and June 2020. We described baseline demographics, comorbidities, symptoms, 30-day in-hospital treatments, and outcomes including hospitalization, pneumonia, acute respiratory distress syndrome, multisystem inflammatory syndrome in children, and death. RESULTS: A total of 242 158 children and adolescents diagnosed and 9769 hospitalized with COVID-19 and 2 084 180 diagnosed with influenza were studied. Comorbidities including neurodevelopmental disorders, heart disease, and cancer were more common among those hospitalized with versus diagnosed with COVID-19. Dyspnea, bronchiolitis, anosmia, and gastrointestinal symptoms were more common in COVID-19 than influenza. In-hospital prevalent treatments for COVID-19 included repurposed medications (<10%) and adjunctive therapies: systemic corticosteroids (6.8%-7.6%), famotidine (9.0%-28.1%), and antithrombotics such as aspirin (2.0%-21.4%), heparin (2.2%-18.1%), and enoxaparin (2.8%-14.8%). Hospitalization was observed in 0.3% to 1.3% of the cohort diagnosed with COVID-19, with undetectable (n < 5 per database) 30-day fatality. Thirty-day outcomes including pneumonia and hypoxemia were more frequent in COVID-19 than influenza. CONCLUSIONS: Despite negligible fatality, complications including hospitalization, hypoxemia, and pneumonia were more frequent in children and adolescents with COVID-19 than with influenza. Dyspnea, anosmia, and gastrointestinal symptoms could help differentiate diagnoses. A wide range of medications was used for the inpatient management of pediatric COVID-19.
Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Adolescente , Distribuição por Idade , COVID-19/complicações , COVID-19/diagnóstico , COVID-19/epidemiologia , Criança , Pré-Escolar , Estudos de Coortes , Comorbidade , Bases de Dados Factuais , Diagnóstico Diferencial , Feminino , França/epidemiologia , Alemanha/epidemiologia , Hospitalização/estatística & dados numéricos , Humanos , Lactente , Recém-Nascido , Influenza Humana/complicações , Influenza Humana/diagnóstico , Influenza Humana/epidemiologia , Masculino , República da Coreia/epidemiologia , Espanha/epidemiologia , Avaliação de Sintomas , Fatores de Tempo , Resultado do Tratamento , Estados Unidos/epidemiologiaRESUMO
OBJECTIVE: To investigate the use of repurposed and adjuvant drugs in patients admitted to hospital with covid-19 across three continents. DESIGN: Multinational network cohort study. SETTING: Hospital electronic health records from the United States, Spain, and China, and nationwide claims data from South Korea. PARTICIPANTS: 303 264 patients admitted to hospital with covid-19 from January 2020 to December 2020. MAIN OUTCOME MEASURES: Prescriptions or dispensations of any drug on or 30 days after the date of hospital admission for covid-19. RESULTS: Of the 303 264 patients included, 290 131 were from the US, 7599 from South Korea, 5230 from Spain, and 304 from China. 3455 drugs were identified. Common repurposed drugs were hydroxychloroquine (used in from <5 (<2%) patients in China to 2165 (85.1%) in Spain), azithromycin (from 15 (4.9%) in China to 1473 (57.9%) in Spain), combined lopinavir and ritonavir (from 156 (<2%) in the VA-OMOP US to 2,652 (34.9%) in South Korea and 1285 (50.5%) in Spain), and umifenovir (0% in the US, South Korea, and Spain and 238 (78.3%) in China). Use of adjunctive drugs varied greatly, with the five most used treatments being enoxaparin, fluoroquinolones, ceftriaxone, vitamin D, and corticosteroids. Hydroxychloroquine use increased rapidly from March to April 2020 but declined steeply in May to June and remained low for the rest of the year. The use of dexamethasone and corticosteroids increased steadily during 2020. CONCLUSIONS: Multiple drugs were used in the first few months of the covid-19 pandemic, with substantial geographical and temporal variation. Hydroxychloroquine, azithromycin, lopinavir-ritonavir, and umifenovir (in China only) were the most prescribed repurposed drugs. Antithrombotics, antibiotics, H2 receptor antagonists, and corticosteroids were often used as adjunctive treatments. Research is needed on the comparative risk and benefit of these treatments in the management of covid-19.
Assuntos
Tratamento Farmacológico da COVID-19 , Quimioterapia Adjuvante/métodos , Reposicionamento de Medicamentos/métodos , Demandas Administrativas em Assistência à Saúde/estatística & dados numéricos , Adolescente , Corticosteroides/uso terapêutico , Adulto , Idoso , Idoso de 80 Anos ou mais , Azitromicina/uso terapêutico , COVID-19/diagnóstico , COVID-19/epidemiologia , COVID-19/virologia , Ceftriaxona/uso terapêutico , Criança , Pré-Escolar , China/epidemiologia , Estudos de Coortes , Combinação de Medicamentos , Registros Eletrônicos de Saúde/estatística & dados numéricos , Enoxaparina/uso terapêutico , Feminino , Fluoroquinolonas/uso terapêutico , Humanos , Hidroxicloroquina/uso terapêutico , Lactente , Recém-Nascido , Pacientes Internados , Lopinavir/uso terapêutico , Masculino , Pessoa de Meia-Idade , República da Coreia/epidemiologia , Ritonavir/uso terapêutico , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genética , Segurança , Espanha/epidemiologia , Resultado do Tratamento , Estados Unidos/epidemiologia , Vitamina D/uso terapêutico , Adulto JovemRESUMO
OBJECTIVE: To characterise patients with and without prevalent hypertension and COVID-19 and to assess adverse outcomes in both inpatients and outpatients. DESIGN AND SETTING: This is a retrospective cohort study using 15 healthcare databases (primary and secondary electronic healthcare records, insurance and national claims data) from the USA, Europe and South Korea, standardised to the Observational Medical Outcomes Partnership common data model. Data were gathered from 1 March to 31 October 2020. PARTICIPANTS: Two non-mutually exclusive cohorts were defined: (1) individuals diagnosed with COVID-19 (diagnosed cohort) and (2) individuals hospitalised with COVID-19 (hospitalised cohort), and stratified by hypertension status. Follow-up was from COVID-19 diagnosis/hospitalisation to death, end of the study period or 30 days. OUTCOMES: Demographics, comorbidities and 30-day outcomes (hospitalisation and death for the 'diagnosed' cohort and adverse events and death for the 'hospitalised' cohort) were reported. RESULTS: We identified 2 851 035 diagnosed and 563 708 hospitalised patients with COVID-19. Hypertension was more prevalent in the latter (ranging across databases from 17.4% (95% CI 17.2 to 17.6) to 61.4% (95% CI 61.0 to 61.8) and from 25.6% (95% CI 24.6 to 26.6) to 85.9% (95% CI 85.2 to 86.6)). Patients in both cohorts with hypertension were predominantly >50 years old and female. Patients with hypertension were frequently diagnosed with obesity, heart disease, dyslipidaemia and diabetes. Compared with patients without hypertension, patients with hypertension in the COVID-19 diagnosed cohort had more hospitalisations (ranging from 1.3% (95% CI 0.4 to 2.2) to 41.1% (95% CI 39.5 to 42.7) vs from 1.4% (95% CI 0.9 to 1.9) to 15.9% (95% CI 14.9 to 16.9)) and increased mortality (ranging from 0.3% (95% CI 0.1 to 0.5) to 18.5% (95% CI 15.7 to 21.3) vs from 0.2% (95% CI 0.2 to 0.2) to 11.8% (95% CI 10.8 to 12.8)). Patients in the COVID-19 hospitalised cohort with hypertension were more likely to have acute respiratory distress syndrome (ranging from 0.1% (95% CI 0.0 to 0.2) to 65.6% (95% CI 62.5 to 68.7) vs from 0.1% (95% CI 0.0 to 0.2) to 54.7% (95% CI 50.5 to 58.9)), arrhythmia (ranging from 0.5% (95% CI 0.3 to 0.7) to 45.8% (95% CI 42.6 to 49.0) vs from 0.4% (95% CI 0.3 to 0.5) to 36.8% (95% CI 32.7 to 40.9)) and increased mortality (ranging from 1.8% (95% CI 0.4 to 3.2) to 25.1% (95% CI 23.0 to 27.2) vs from 0.7% (95% CI 0.5 to 0.9) to 10.9% (95% CI 10.4 to 11.4)) than patients without hypertension. CONCLUSIONS: COVID-19 patients with hypertension were more likely to suffer severe outcomes, hospitalisations and deaths compared with those without hypertension.
Assuntos
COVID-19 , Hipertensão , Teste para COVID-19 , Estudos de Coortes , Comorbidade , Feminino , Hospitalização , Humanos , Hipertensão/epidemiologia , Pessoa de Meia-Idade , Estudos Retrospectivos , SARS-CoV-2RESUMO
OBJECTIVE: To estimate the proportion of patients hospitalized with COVID-19 who undergo dialysis, tracheostomy, and extracorporeal membrane oxygenation (ECMO). DESIGN: A network cohort study. SETTING: Seven databases from the United States containing routinely-collected patient data: HealthVerity, Premier, IQVIA Hospital CDM, IQVIA Open Claims, Optum EHR, Optum SES, and VA-OMOP. PATIENTS: Patients hospitalized with a clinical diagnosis or a positive test result for COVID-19. INTERVENTIONS: Dialysis, tracheostomy, and ECMO. MEASUREMENTS AND MAIN RESULTS: 842,928 patients hospitalized with COVID-19 were included (22,887 from HealthVerity, 77,853 from IQVIA Hospital CDM, 533,997 from IQVIA Open Claims, 36,717 from Optum EHR, 4,336 from OPTUM SES, 156,187 from Premier, and 10,951 from VA-OMOP). Across the six databases, 35,192 (4.17% [95% CI: 4.13% to 4.22%]) patients received dialysis, 6,950 (0.82% [0.81% to 0.84%]) had a tracheostomy, and 1,568 (0.19% [95% CI: 0.18% to 0.20%]) patients underwent ECMO over the 30 days following hospitalization. Use of ECMO was more common among patients who were younger, male, and with fewer comorbidities. Tracheostomy was broadly used for a similar proportion of patients regardless of age, sex, or comorbidity. While dialysis was generally used for a similar proportion among younger and older patients, it was more frequent among male patients and among those with chronic kidney disease. CONCLUSION: Use of dialysis among those hospitalized with COVID-19 is high at around 4%. Although less than one percent of patients undergo tracheostomy and ECMO, the absolute numbers of patients who have undergone these interventions is substantial.
RESUMO
Incident depression has been reported to be associated with poor prognosis in patients with cardiovascular disease (CVD), which might be associated with beta-blocker therapy. Because early detection and intervention can alleviate the severity of depression, we aimed to develop a machine learning (ML) model predicting the onset of major depressive disorder (MDD). A model based on L1 regularized logistic regression was trained against the South Korean nationwide administrative claims database to identify risk factors for the incident MDD after beta-blocker therapy in patients with CVD. We identified 50,397 patients initiating beta-blockers for CVD, with 774 patients developing MDD within 365 days after initiating beta-blocker therapy. An area under the receiver operating characteristic curve (AUC) of 0.74 was achieved. A history of non-selective beta-blockers and factors related to anxiety disorder, sleeping problems, and other chronic diseases were the most strong predictors. AUCs of 0.62-0.71 were achieved in the external validation conducted on six independent electronic health records and claims databases in the USA and South Korea. In conclusion, an ML model that identifies patients at high-risk for incident MDD was developed. Application of ML to identify susceptible patients for adverse events of treatment may serve as an important approach for personalized medicine.
RESUMO
OBJECTIVE: Patients with autoimmune diseases were advised to shield to avoid COVID-19, but information on their prognosis is lacking. We characterised 30-day outcomes and mortality after hospitalisation with COVID-19 among patients with prevalent autoimmune diseases, and compared outcomes after hospital admissions among similar patients with seasonal influenza. DESIGN: Multinational network cohort study. SETTING: Electronic health records data from Columbia University Irving Medical Center (CUIMC) (NYC, United States [US]), Optum [US], Department of Veterans Affairs (VA) (US), Information System for Research in Primary Care-Hospitalisation Linked Data (SIDIAP-H) (Spain), and claims data from IQVIA Open Claims (US) and Health Insurance and Review Assessment (HIRA) (South Korea). PARTICIPANTS: All patients with prevalent autoimmune diseases, diagnosed and/or hospitalised between January and June 2020 with COVID-19, and similar patients hospitalised with influenza in 2017-2018 were included. MAIN OUTCOME MEASURES: 30-day complications during hospitalisation and death. RESULTS: We studied 133,589 patients diagnosed and 48,418 hospitalised with COVID-19 with prevalent autoimmune diseases. The majority of participants were female (60.5% to 65.9%) and aged ≥50 years. The most prevalent autoimmune conditions were psoriasis (3.5 to 32.5%), rheumatoid arthritis (3.9 to 18.9%), and vasculitis (3.3 to 17.6%). Amongst hospitalised patients, Type 1 diabetes was the most common autoimmune condition (4.8% to 7.5%) in US databases, rheumatoid arthritis in HIRA (18.9%), and psoriasis in SIDIAP-H (26.4%).Compared to 70,660 hospitalised with influenza, those admitted with COVID-19 had more respiratory complications including pneumonia and acute respiratory distress syndrome, and higher 30-day mortality (2.2% to 4.3% versus 6.3% to 24.6%). CONCLUSIONS: Patients with autoimmune diseases had high rates of respiratory complications and 30-day mortality following a hospitalization with COVID-19. Compared to influenza, COVID-19 is a more severe disease, leading to more complications and higher mortality. Future studies should investigate predictors of poor outcomes in COVID-19 patients with autoimmune diseases. WHAT IS ALREADY KNOWN ABOUT THIS TOPIC: Patients with autoimmune conditions may be at increased risk of COVID-19 infection andcomplications.There is a paucity of evidence characterising the outcomes of hospitalised COVID-19 patients with prevalent autoimmune conditions. WHAT THIS STUDY ADDS: Most people with autoimmune diseases who required hospitalisation for COVID-19 were women, aged 50 years or older, and had substantial previous comorbidities.Patients who were hospitalised with COVID-19 and had prevalent autoimmune diseases had higher prevalence of hypertension, chronic kidney disease, heart disease, and Type 2 diabetes as compared to those with prevalent autoimmune diseases who were diagnosed with COVID-19.A variable proportion of 6% to 25% across data sources died within one month of hospitalisation with COVID-19 and prevalent autoimmune diseases.For people with autoimmune diseases, COVID-19 hospitalisation was associated with worse outcomes and 30-day mortality compared to admission with influenza in the 2017-2018 season.
RESUMO
Early identification of symptoms and comorbidities most predictive of COVID-19 is critical to identify infection, guide policies to effectively contain the pandemic, and improve health systems' response. Here, we characterised socio-demographics and comorbidity in 3,316,107persons tested and 219,072 persons tested positive for SARS-CoV-2 since January 2020, and their key health outcomes in the month following the first positive test. Routine care data from primary care electronic health records (EHR) from Spain, hospital EHR from the United States (US), and claims data from South Korea and the US were used. The majority of study participants were women aged 18-65 years old. Positive/tested ratio varied greatly geographically (2.2:100 to 31.2:100) and over time (from 50:100 in February-April to 6.8:100 in May-June). Fever, cough and dyspnoea were the most common symptoms at presentation. Between 4%-38% required admission and 1-10.5% died within a month from their first positive test. Observed disparity in testing practices led to variable baseline characteristics and outcomes, both nationally (US) and internationally. Our findings highlight the importance of large scale characterization of COVID-19 international cohorts to inform planning and resource allocation including testing as countries face a second wave.
RESUMO
Objectives To characterize the demographics, comorbidities, symptoms, in-hospital treatments, and health outcomes among children/adolescents diagnosed or hospitalized with COVID-19. Secondly, to describe health outcomes amongst children/adolescents diagnosed with previous seasonal influenza. Design International network cohort. Setting Real-world data from European primary care records (France/Germany/Spain), South Korean claims and US claims and hospital databases. Participants Diagnosed and/or hospitalized children/adolescents with COVID-19 at age <18 between January and June 2020; diagnosed with influenza in 2017-2018. Main outcome measures Baseline demographics and comorbidities, symptoms, 30-day in-hospital treatments and outcomes including hospitalization, pneumonia, acute respiratory distress syndrome (ARDS), multi-system inflammatory syndrome (MIS-C), and death. Results A total of 55,270 children/adolescents diagnosed and 3,693 hospitalized with COVID-19 and 1,952,693 diagnosed with influenza were studied. Comorbidities including neurodevelopmental disorders, heart disease, and cancer were all more common among those hospitalized vs diagnosed with COVID-19. The most common COVID-19 symptom was fever. Dyspnea, bronchiolitis, anosmia and gastrointestinal symptoms were more common in COVID-19 than influenza. In-hospital treatments for COVID-19 included repurposed medications (<10%), and adjunctive therapies: systemic corticosteroids (6.8% to 37.6%), famotidine (9.0% to 28.1%), and antithrombotics such as aspirin (2.0% to 21.4%), heparin (2.2% to 18.1%), and enoxaparin (2.8% to 14.8%). Hospitalization was observed in 0.3% to 1.3% of the COVID-19 diagnosed cohort, with undetectable (N<5 per database) 30-day fatality. Thirty-day outcomes including pneumonia, ARDS, and MIS-C were more frequent in COVID-19 than influenza. Conclusions Despite negligible fatality, complications including pneumonia, ARDS and MIS-C were more frequent in children/adolescents with COVID-19 than with influenza. Dyspnea, anosmia and gastrointestinal symptoms could help differential diagnosis. A wide range of medications were used for the inpatient management of pediatric COVID-19.