Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Chem Phys ; 134(15): 154108, 2011 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-21513376

RESUMO

A scheme is described for performing molecular dynamics simulations on polymers under nonperiodic, stochastic boundary conditions. It has been designed to allow later the embedding of a particle domain treated by molecular dynamics into a continuum environment treated by finite elements. It combines, in the boundary region, harmonically restrained particles to confine the system with dissipative particle dynamics to dissipate energy and to thermostat the simulation. The equilibrium position of the tethered particles, the so-called anchor points, are well suited for transmitting deformations, forces and force derivatives between the particle and continuum domains. In the present work the particle scheme is tested by comparing results for coarse-grained polystyrene melts under nonperiodic and regular periodic boundary conditions. Excellent agreement is found for thermodynamic, structural, and dynamic properties.

2.
Anal Bioanal Chem ; 393(8): 1879-88, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19214485

RESUMO

Time-of-flight secondary ion mass spectrometry (ToF-SIMS) has become a powerful tool in the field of surface analysis since it provides information about the top few monolayers of a sample, i.e. on the chemical composition of the sample surface. Thus, the general question arises whether a surface-sensitive technique like ToF-SIMS would be appropriate to detect systematic chemical and/or structural changes in organic bulk polymers caused by varying a chemical content of the initial components or by tracking, e.g. curing processes in such materials. It is shown that careful sample preparation and the use of multivariate methods permit the quantitative acquisition of chemical and structural information about bulk polymers from the secondary ion signals. The hardener concentration and a cross-linking coefficient in diglycidyl ether of bisphenol A based epoxies were determined by ToF-SIMS measurements on samples with different resin to hardener ratio and varying curing time. In future work, we will use the developed method to investigate the local composition of adhesively bonded joints. In particular, the mapping of the chemical and structural properties in the so-called interphase will then be of interest.


Assuntos
Compostos de Epóxi/química , Politetrafluoretileno/química , Compostos Benzidrílicos , Estrutura Molecular , Análise Multivariada , Espectrometria de Massa de Íon Secundário , Propriedades de Superfície , Fatores de Tempo
3.
Polymers (Basel) ; 11(11)2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31698788

RESUMO

In this contribution, we present a characterization methodology to obtain pseudo experimental deformation data from CG MD simulations of polymers as an inevitable prerequisite to choose and calibrate continuum mechanical constitutive laws. Without restriction of generality, we employ a well established CG model of atactic polystyrene as exemplary model system and simulate its mechanical behavior under various uniaxial tension and compression load cases. To demonstrate the applicability of the obtained data, we exemplarily calibrate a viscoelastic continuum mechanical constitutive law. We conclude our contribution by a thorough discussion of the findings obtained in the numerical pseudo experiments and give an outline of subsequent research activities. Thus, this work contributes to the field of multiscale simulation methods and adds a specific application to the body of knowledge of CG MD simulations.

4.
Phys Rev E ; 93(5): 052505, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27300943

RESUMO

A recently developed hybrid method is employed to study the mechanical behavior of silica-polystyrene nanocomposites (NCs) under uniaxial elongation. The hybrid method couples a particle domain to a continuum domain. The region of physical interest, i.e., the interphase around a nanoparticle (NP), is treated at molecular resolution, while the surrounding elastic continuum is handled with a finite-element approach. In the present paper we analyze the polymer behavior in the neighborhood of one or two nanoparticle(s) at molecular resolution. The coarse-grained hybrid method allows us to simulate a large polymer matrix region surrounding the nanoparticles. We consider NCs with dilute concentration of NPs embedded in an atactic polystyrene matrix formed by 300 chains with 200 monomer beads. The overall orientation of polymer segments relative to the deformation direction is determined in the neighborhood of the nanoparticle to investigate the polymer response to this perturbation. Calculations of strainlike quantities give insight into the deformation behavior of a system with two NPs and show that the applied strain and the nanoparticle distance have significant influence on the deformation behavior. Finally, we investigate to what extent a continuum-based description may account for the specific effects occurring in the interphase between the polymer matrix and the NPs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA