Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Genome Biol ; 24(1): 187, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37582787

RESUMO

BACKGROUND: The international Dog10K project aims to sequence and analyze several thousand canine genomes. Incorporating 20 × data from 1987 individuals, including 1611 dogs (321 breeds), 309 village dogs, 63 wolves, and four coyotes, we identify genomic variation across the canid family, setting the stage for detailed studies of domestication, behavior, morphology, disease susceptibility, and genome architecture and function. RESULTS: We report the analysis of > 48 M single-nucleotide, indel, and structural variants spanning the autosomes, X chromosome, and mitochondria. We discover more than 75% of variation for 239 sampled breeds. Allele sharing analysis indicates that 94.9% of breeds form monophyletic clusters and 25 major clades. German Shepherd Dogs and related breeds show the highest allele sharing with independent breeds from multiple clades. On average, each breed dog differs from the UU_Cfam_GSD_1.0 reference at 26,960 deletions and 14,034 insertions greater than 50 bp, with wolves having 14% more variants. Discovered variants include retrogene insertions from 926 parent genes. To aid functional prioritization, single-nucleotide variants were annotated with SnpEff and Zoonomia phyloP constraint scores. Constrained positions were negatively correlated with allele frequency. Finally, the utility of the Dog10K data as an imputation reference panel is assessed, generating high-confidence calls across varied genotyping platform densities including for breeds not included in the Dog10K collection. CONCLUSIONS: We have developed a dense dataset of 1987 sequenced canids that reveals patterns of allele sharing, identifies likely functional variants, informs breed structure, and enables accurate imputation. Dog10K data are publicly available.


Assuntos
Lobos , Cães , Animais , Lobos/genética , Mapeamento Cromossômico , Alelos , Polimorfismo de Nucleotídeo Único , Nucleotídeos , Demografia
3.
Artigo em Inglês | MEDLINE | ID: mdl-17347009

RESUMO

Most recent molecular studies revealed the phylogeny of Greek Podarcis species, which for years remained elusive, due to discordant data produced from various chromosomal, complement fixation and protein studies. In this report, we analyzed cellular immune responses of spleen-derived lymphocytes from six allopatric Podarcis species encountered in Greece, by assessing two-way mixed lymphocyte reaction (MLR)-induced proliferation. On the basis of stimulation indices (S.I.) as determined from cultures set up from xenogeneic splenocytes coincubated in pairs, we generated a phylogenetic tree, fully consistent with the phylogenetic relationships of Podarcis as determined by parallel analyses based on partial mitochondrial (mt) DNA sequences. Although the exact mechanisms triggering lymphocyte responses in lizard two-way xenogeneic MLR are not fully understood, our results show the potential use of cell-mediated immune responses as an additional approach to mtDNA analysis, for species delimitation within specific lizard taxa.


Assuntos
Lagartos/genética , Lagartos/imunologia , Filogenia , Animais , Sequência de Bases , Proliferação de Células , Sobrevivência Celular , DNA Mitocondrial/genética , Geografia , Grécia , Lagartos/classificação , Teste de Cultura Mista de Linfócitos , Linfócitos/citologia , Masculino , Baço/citologia , Fatores de Tempo
4.
PLoS One ; 5(1): e8885, 2010 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-20126662

RESUMO

BACKGROUND: It has long been the goal of vector biology to generate genetic knowledge that can be used to "manipulate" natural populations of vectors to eliminate or lessen disease burden. While long in coming, progress towards reaching this goal has been made. Aiming to increase our understanding regarding the interactions between Plasmodium and the Anopheles immune genes, we investigated the patterns of genetic diversity of four anti-Plasmodium genes in the Anopheles gambiae complex of species. METHODOLOGY/PRINCIPAL FINDINGS: Within a comparative phylogenetic and population genetics framework, the evolutionary history of four innate immunity genes within the An. gambiae complex (including the two most important human malaria vectors, An. gambiae and An. arabiensis) is reconstructed. The effect of natural selection in shaping the genes' diversity is examined. Introgression and retention of ancestral polymorphisms are relatively rare at all loci. Despite the potential confounding effects of these processes, we could identify sites that exhibited dN/dS ratios greater than 1. CONCLUSIONS/SIGNIFICANCE: In two of the studied genes, CLIPB14 and FBN8, several sites indicated evolution under positive selection, with CLIPB14 exhibiting the most consistent evidence. Considering only the sites that were consistently identified by all methods, two sites in CLIPB14 are adaptively driven. However, the analysis inferring the lineage -specific evolution of each gene was not in favor of any of the Anopheles lineages evolving under the constraints imposed by positive selection. Nevertheless, the loci and the specific amino acids that were identified as evolving under strong evolutionary pressure merit further investigation for their involvement in the Anopheles defense against microbes in general.


Assuntos
Aminoácidos/genética , Anopheles/genética , Imunidade/genética , Seleção Genética , Animais , Anopheles/imunologia , Sequência de Bases , Primers do DNA , Variação Genética , Filogenia , Reação em Cadeia da Polimerase , Polimorfismo Genético , Recombinação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA