Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Plant Physiol ; 185(3): 815-835, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33793914

RESUMO

The metabolic pathways of glycerolipids are well described in cells containing chloroplasts limited by a two-membrane envelope but not in cells containing plastids limited by four membranes, including heterokonts. Fatty acids (FAs) produced in the plastid, palmitic and palmitoleic acids (16:0 and 16:1), are used in the cytosol for the synthesis of glycerolipids via various routes, requiring multiple acyl-Coenzyme A (CoA) synthetases (ACS). Here, we characterized an ACS of the Bubblegum subfamily in the photosynthetic eukaryote Microchloropsis gaditana, an oleaginous heterokont used for the production of lipids for multiple applications. Genome engineering with TALE-N allowed the generation of MgACSBG point mutations, but no knockout was obtained. Point mutations triggered an overall decrease of 16:1 in lipids, a specific increase of unsaturated 18-carbon acyls in phosphatidylcholine and decrease of 20-carbon acyls in the betaine lipid diacylglyceryl-trimethyl-homoserine. The profile of acyl-CoAs highlighted a decrease in 16:1-CoA and 18:3-CoA. Structural modeling supported that mutations affect accessibility of FA to the MgACSBG reaction site. Expression in yeast defective in acyl-CoA biosynthesis further confirmed that point mutations affect ACSBG activity. Altogether, this study supports a critical role of heterokont MgACSBG in the production of 16:1-CoA and 18:3-CoA. In M. gaditana mutants, the excess saturated and monounsaturated FAs were diverted to triacylglycerol, thus suggesting strategies to improve the oil content in this microalga.


Assuntos
Coenzima A Ligases/metabolismo , Cianobactérias/genética , Cianobactérias/fisiologia , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Redes e Vias Metabólicas , Fotossíntese/fisiologia , Coenzima A Ligases/genética
2.
Mar Drugs ; 20(12)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36547878

RESUMO

Diabolican, or HE800, is an exopolysaccharide secreted by the non-pathogenic Gram-negative marine bacterium Vibrio diabolicus (CNCM I-1629). This polysaccharide was enzymatically degraded by the Bacteroides cellulosilyticus WH2 hyaluronan lyase. The end products were purified by size-exclusion chromatography and their structures were analyzed in depth by nuclear magnetic resonance (NMR). The oligosaccharide structures confirmed the possible site of cleavage of the enzyme showing plasticity in the substrate recognitions. The production of glycosaminoglycan-mimetic oligosaccharides of defined molecular weight and structure opens new perspectives in the valorization of the marine polysaccharide diabolican.


Assuntos
Proteínas de Bactérias , Bacteroides , Polissacarídeo-Liases , Polissacarídeos Bacterianos , Vibrio , Oligossacarídeos/química , Polissacarídeo-Liases/química , Polissacarídeos Bacterianos/química , Vibrio/química , Proteínas de Bactérias/química , Ressonância Magnética Nuclear Biomolecular , Bacteroides/enzimologia
3.
Proc Natl Acad Sci U S A ; 116(13): 6063-6068, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30850540

RESUMO

Over the last two decades, the number of gene/protein sequences gleaned from sequencing projects of individual genomes and environmental DNA has grown exponentially. Only a tiny fraction of these predicted proteins has been experimentally characterized, and the function of most proteins remains hypothetical or only predicted based on sequence similarity. Despite the development of postgenomic methods, such as transcriptomics, proteomics, and metabolomics, the assignment of function to protein sequences remains one of the main challenges in modern biology. As in all classes of proteins, the growing number of predicted carbohydrate-active enzymes (CAZymes) has not been accompanied by a systematic and accurate attribution of function. Taking advantage of the CAZy database, which groups CAZymes into families and subfamilies based on amino acid similarities, we recombinantly produced 564 proteins selected from subfamilies without any biochemically characterized representatives, from distant relatives of characterized enzymes and from nonclassified proteins that show little similarity with known CAZymes. Screening these proteins for activity on a wide collection of carbohydrate substrates led to the discovery of 13 CAZyme families (two of which were also discovered by others during the course of our work), revealed three previously unknown substrate specificities, and assigned a function to 25 subfamilies.


Assuntos
Metabolismo dos Carboidratos , Enzimas/genética , Análise de Sequência de Proteína , Sequência de Aminoácidos , Animais , Metabolismo dos Carboidratos/genética , Enzimas/metabolismo , Genômica/métodos , Humanos , Polissacarídeos/metabolismo , Análise de Sequência de DNA , Relação Estrutura-Atividade
4.
J Neurochem ; 131(3): 314-22, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24989320

RESUMO

Since emotional stress elicits brain activation, mitochondria should be a key component of stressed brain response. However, few studies have focused on mitochondria functioning in these conditions. In this work, we aimed to determine the effects of an acute restraint stress on rat brain mitochondrial functions, with a focus on permeability transition pore (PTP) functioning. Rats were divided into two groups, submitted or not to an acute 30-min restraint stress (Stress, S-group, vs. Control, C-group). Brain was removed immediately after stress. Mitochondrial respiration and enzymatic activities (complex I, complex II, hexokinase) were measured. Changes in PTP opening were assessed by the Ca(2+) retention capacity. Cell signaling pathways relevant to the coupling between mitochondria and cell function (adenosine monophosphate-activated protein kinase, phosphatidylinositol 3-kinase, glycogen synthase kinase 3 beta, MAPK, and cGMP/NO) were measured. The effect of glucocorticoids was also assessed in vitro. Stress delayed (43%) the opening of PTP and resulted in a mild inhibition of complex I respiratory chain. This inhibition was associated with significant stress-induced changes in adenosine monophosphate-activated protein kinase signaling pathway without changes in brain cGMP level. In contrast, glucocorticoids did not modify PTP opening. These data suggest a rapid adaptive mechanism of brain mitochondria in stressed conditions, with a special focus on PTP regulation. In a rat model of acute restraint stress, we observed substantial changes in brain mitochondria functioning. Stress significantly (i) delays (43%) the opening of permeability transition pore (PTP) by the calcium (Ca(2+) ), its main inductor and (ii) results in an inhibition of complex I in electron transport chain associated with change in AMPK signaling pathway. These data suggest an adaptive mechanism of brain mitochondria in stressed condition, with a special focus on PTP regulation.


Assuntos
Encéfalo/patologia , Proteínas de Transporte da Membrana Mitocondrial/fisiologia , Estresse Psicológico/patologia , Animais , Encéfalo/efeitos dos fármacos , Cálcio/metabolismo , GMP Cíclico/metabolismo , Glucocorticoides/farmacologia , Masculino , Poro de Transição de Permeabilidade Mitocondrial , Consumo de Oxigênio/efeitos dos fármacos , Permeabilidade , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
5.
Br J Nutr ; 111(7): 1190-201, 2014 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-24252462

RESUMO

The intake of a high-fat/high-fructose (HF/HFr) diet is described to be deleterious to cognitive performances, possibly via the induction of inflammatory factors. An excess of glucocorticoids is also known to exert negative effects on cerebral plasticity. In the present study, we assessed the effects of an unbalanced diet on circulating and central markers of inflammation and glucocorticoid activity, as well as their reversal by dietary cinnamon (CN) supplementation. A group of male Wistar rats were subjected to an immune challenge with acute lipopolysaccharide under a HF/HFr or a standard diet. Another group of Wistar rats were fed either a HF/HFr or a control diet for 12 weeks, with or without CN supplementation, and with or without restraint stress (Str) application before being killed. We evaluated the effects of such regimens on inflammation parameters in the periphery and brain and on the expression of actors of brain plasticity. To assess hypothalamic-pituitary-adrenocortical axis activity, we measured the plasma concentrations of corticosterone and the expression of central corticotrophin-releasing hormone, mineralocorticoid receptor, glucocorticoid receptor and 11ß-hydroxysteroid dehydrogenase. We found that the HF/HFr diet induced the expression of cytokines in the brain, but only after an immune challenge. Furthermore, we observed the negative effects of Str on the plasma concentrations of corticosterone and neuroplasticity markers in rats fed the control diet but not in those fed the HF/HFr diet. Additionally, we found that CN supplementation exerted beneficial effects under the control diet, but that its effects were blunted or even reversed under the HF/HFr diet. CN supplementation could be beneficial under a standard diet. [corrected].


Assuntos
Cinnamomum zeylanicum/química , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Frutose/efeitos adversos , Fitoterapia , Especiarias , Estresse Psicológico/prevenção & controle , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , Citocinas/sangue , Citocinas/metabolismo , Frutose/uso terapêutico , Regulação da Expressão Gênica , Hipocampo/imunologia , Hipocampo/metabolismo , Sistema Hipotálamo-Hipofisário/imunologia , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipotálamo-Hipofisário/fisiopatologia , Masculino , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Plasticidade Neuronal , Neurônios/imunologia , Neurônios/metabolismo , Sistema Hipófise-Suprarrenal/imunologia , Sistema Hipófise-Suprarrenal/metabolismo , Sistema Hipófise-Suprarrenal/fisiopatologia , Casca de Planta/química , Distribuição Aleatória , Ratos , Ratos Wistar , Estresse Psicológico/imunologia , Estresse Psicológico/metabolismo , Estresse Psicológico/fisiopatologia
6.
Carbohydr Res ; 515: 108544, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35367699

RESUMO

Noctoc commune is a cyanobacterium living in various and extreme environments. Its ability to survive in desert, on ice or high altitude is explained by its exceptional metabolism and its capacity to resist to desiccation. N. commune cells are embedded in a gelatinous matrix made of polysaccharides which fixes water and participates in maintaining the cells in hydrated conditions. The structure of the polysaccharide of N. commune harvested in Saint Martin d'Uriage (France) and the oligosaccharides obtained after its enzymatic degradation were determined. The repeating unit of the main chain is a tetra-saccharide: [→4)-ß-D-Glcp-(1 â†’ 4)-ß-D-Xylp-(1 â†’ 4)-ß-D-Glcp-(1 â†’ 4)-α-D-Galp-(1→], branched at position 6 of a glucose residue by a ß-linked pyruvated glucuronic acid residue. About 30% of the Xylp residues were branched with a Xylf residue. Comparison of this structure with the polysaccharides secreted by other Nostoc species and strains suggest a strong selection pressure on the structure in agreement with its important biological role.


Assuntos
Nostoc commune , Carboidratos , Oligossacarídeos/química , Polissacarídeos/química , Água
8.
PLoS One ; 13(5): e0197094, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29813096

RESUMO

In occidental societies, high fat and high sugar diets often coincide with episodes of stress. The association is likely to modify brain energy control. Brain insulin signalling is rarely studied in stressed individuals consuming high fat diets. Furthermore the effects of cinnamon supplement are not known in these conditions. Therefore, we exposed rats, over a 12-week period, to a control (C) or a high fat/high fructose (HF/HFr) diet that induces peripheral insulin resistance. A cinnamon supplement (C+CN and HF/HFr +CN) was added or not. After diet exposure, one group of rats was exposed to a 30-min restraint followed by a 10-min open-field test, their combination featuring a moderate stressor, the other rats staying unstressed in their home cages. The insulin signalling in hippocampus and frontal cortex was studied through the mRNA expression of the following genes: insulin receptor (Ir), insulin receptor substrate (Irs1), glucose transporters (Glut1 and Glut3), glycogen synthase (Gys1) and their modulators, Akt1 and Pten. In C rats, stress enhanced the expression of Ir, Irs1, Glut1, Gys1 and Akt1 mRNA. In C+CN rats, stress induced an increase in Pten but a decrease in Gys1 mRNA expression. In HF/HFr rats, stress was associated with an increase in Pten mRNA expression. In HF/HFr+CN rats, stress increased Pten mRNA expression but also decreased Gys1 mRNA expression. This suggests that a single moderate stress favours energy refilling mechanisms, an effect blunted by a previous HF/HFr diet and cinnamon supplement.


Assuntos
Encéfalo/metabolismo , Dieta Hiperlipídica/efeitos adversos , Extratos Vegetais/administração & dosagem , RNA Mensageiro/genética , Estresse Psicológico/metabolismo , Animais , Cinnamomum zeylanicum/química , Corticosterona/genética , Corticosterona/metabolismo , Dieta Ocidental/efeitos adversos , Suplementos Nutricionais , Frutose/administração & dosagem , Insulina/fisiologia , Resistência à Insulina , Masculino , RNA Mensageiro/metabolismo , Ratos Wistar , Transdução de Sinais , Transcriptoma
9.
Sci Rep ; 8(1): 8075, 2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29795267

RESUMO

In bacteria from the phylum Bacteroidetes, the genes coding for enzymes involved in polysaccharide degradation are often colocalized and coregulated in so-called "polysaccharide utilization loci" (PULs). PULs dedicated to the degradation of marine polysaccharides (e.g. laminaran, ulvan, alginate and porphyran) have been characterized in marine bacteria. Interestingly, the gut microbiome of Japanese individuals acquired, by lateral transfer from marine bacteria, the genes involved in the breakdown of porphyran, the cell wall polysaccharide of the red seaweed used in maki. Sequence similarity analyses predict that the human gut microbiome also encodes enzymes for the degradation of alginate, the main cell wall polysaccharide of brown algae. We undertook the functional characterization of diverse polysaccharide lyases from family PL17, frequently found in marine bacteria as well as those of human gut bacteria. We demonstrate here that this family is polyspecific. Our phylogenetic analysis of family PL17 reveals that all alginate lyases, which have all the same specificity and mode of action, cluster together in a very distinct subfamily. The alginate lyases found in human gut bacteria group together in a single clade which is rooted deeply in the PL17 tree. These enzymes were found in PULs containing PL6 enzymes, which also clustered together in the phylogenetic tree of PL6. Together, biochemical and bioinformatics analyses suggest that acquisition of this system appears ancient and, because only traces of two successful transfers were detected upon inspection of PL6 and PL17 families, the pace of acquisition of marine polysaccharide degradation system is probably very slow.


Assuntos
Alginatos/metabolismo , Bactérias/metabolismo , Microbioma Gastrointestinal , Polissacarídeo-Liases/metabolismo , Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Humanos , Família Multigênica , Filogenia , Polissacarídeo-Liases/genética , Especificidade por Substrato
10.
J Nutr Biochem ; 28: 183-90, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26878796

RESUMO

Insulin resistance (IR), which is a leading cause of the metabolic syndrome, results in early brain function alterations which may alter brain mitochondrial functioning. Previously, we demonstrated that rats fed a control diet and submitted to an acute restraint stress exhibited a delayed mitochondrial permeability transition pore (mPTP) opening. In this study, we evaluated the combined effects of dietary and emotional stressors as found in western way of life. We studied, in rats submitted or not to an acute stress, the effects of diet-induced IR on brain mitochondria, using a high fat/high fructose diet (HF(2)), as an IR inducer, with addition or not of cinnamon as an insulin sensitizer. We measured Ca(2+) retention capacity, respiration, ROS production, enzymatic activities and cell signaling activation. Under stress, HF(2) diet dramatically decreased the amount of Ca(2+) required to open the mPTP (13%) suggesting an adverse effect on mitochondrial survival. Cinnamon added to the diet corrected this negative effect and resulted in a partial recovery (30%). The effects related to cinnamon addition to the diet could be due to its antioxidant properties or to the observed modulation of PI3K-AKT-GSK3ß and MAPK-P38 pathways or to a combination of both. These data suggest a protective effect of cinnamon on brain mitochondria against the negative impact of an HF(2) diet. Cinnamon could be beneficial to counteract deleterious dietary effects in stressed conditions.


Assuntos
Encéfalo/metabolismo , Cinnamomum zeylanicum , Resistência à Insulina , Mitocôndrias/metabolismo , Estresse Oxidativo , Adenilato Quinase/metabolismo , Animais , Encéfalo/enzimologia , Masculino , Mitocôndrias/enzimologia , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
11.
PLoS One ; 8(12): e83243, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24349472

RESUMO

Insulin resistance leads to memory impairment. Cinnamon (CN) improves peripheral insulin resistance but its effects in the brain are not known. Changes in behavior, insulin signaling and Alzheimer-associated mRNA expression in the brain were measured in male Wistar rats fed a high fat/high fructose (HF/HFr) diet to induce insulin resistance, with or without CN, for 12 weeks. There was a decrease in insulin sensitivity associated with the HF/HFr diet that was reversed by CN. The CN fed rats were more active in a Y maze test than rats fed the control and HF/HFr diets. The HF/HFr diet fed rats showed greater anxiety in an elevated plus maze test that was lessened by feeding CN. The HF/HFr diet also led to a down regulation of the mRNA coding for GLUT1 and GLUT3 that was reversed by CN in the hippocampus and cortex. There were increases in Insr, Irs1 and Irs2 mRNA in the hippocampus and cortex due to the HF/HFr diet that were not reversed by CN. Increased peripheral insulin sensitivity was also associated with increased glycogen synthase in both hippocampus and cortex in the control and HF/HFr diet animals fed CN. The HF/HFr diet induced increases in mRNA associated with Alzheimers including PTEN, Tau and amyloid precursor protein (App) were also alleviated by CN. In conclusion, these data suggest that the negative effects of a HF/HFr diet on behavior, brain insulin signaling and Alzheimer-associated changes were alleviated by CN suggesting that neuroprotective effects of CN are associated with improved whole body insulin sensitivity and related changes in the brain.


Assuntos
Doença de Alzheimer/metabolismo , Comportamento Animal/efeitos dos fármacos , Córtex Cerebral/metabolismo , Cinnamomum zeylanicum/química , Gorduras na Dieta/efeitos adversos , Frutose/efeitos adversos , Hipocampo/metabolismo , Insulina/metabolismo , Extratos Vegetais/farmacologia , Transdução de Sinais/efeitos dos fármacos , Edulcorantes/efeitos adversos , Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Animais , Córtex Cerebral/patologia , Córtex Cerebral/fisiopatologia , Gorduras na Dieta/farmacologia , Frutose/farmacologia , Hipocampo/patologia , Hipocampo/fisiopatologia , Masculino , Extratos Vegetais/química , Ratos , Ratos Wistar , Edulcorantes/farmacologia
12.
Eur J Pharmacol ; 682(1-3): 92-8, 2012 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-22387859

RESUMO

Metyrapone is a cytochrome P(450) inhibitor that protects against ischemia- and excitotoxicity-induced brain damages in rodents. This study examines whether metyrapone would act on energy metabolism in a manner congruent with its neuroprotective effect. In a first investigation, the rats instrumented with telemetric devices measuring abdominal temperature, received i.p. injection of either metyrapone or saline. One hour after injection, their blood and hippocampus were sampled. Hippocampus metabolite concentrations were measured using (1)H high-resolution magic angle spinning-magnetic resonance spectroscopy ((1)H HRMAS-MRS). The hippocampus levels in phosphorylated mammalian target of rapamycin (mTOR) and adenosine monophosphate-activated protein kinase (AMPK) were measured by Western Blot analysis and those of c-fos and HSP70-2 mRNA were quantified by RT-PCR. In a second investigation, the rats received the same treatment and were sacrificed 1h after. The functioning of mitochondria was immediately studied on their whole brain. Metyrapone provoked a slight hypothermia which was correlated to the increase in blood glucose concentration. Metyrapone also increased blood lactate concentrations without modifying hippocampus lactate content. In the hippocampus, metyrapone decreased γ-aminobutyric acid (GABA) and glutamate levels but increased glutamine and N-acetyl-aspartate contents (NAA). Phosphorylated mTOR and AMPK and the c-fos and HSP70-2 mRNA levels were similar between treatment groups. Metyrapone did not modify blood corticosterone levels. Mitochondrial oxygen consumption was similar in both groups whatever the substrate used. These metabolic modifications, which take place without modifying blood glucocorticoid levels, are consistent with the neuroprotective properties of metyrapone as demonstrated in animal models.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Metabolismo Energético/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Metirapona/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Encéfalo/citologia , Proteínas de Choque Térmico HSP70/genética , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Oxigênio/metabolismo , Prosencéfalo/citologia , Prosencéfalo/efeitos dos fármacos , Prosencéfalo/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Serina-Treonina Quinases TOR/metabolismo , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA